Show simple item record

dc.contributor.authorOelker, Abigail M.
dc.contributor.authorMorey, Shannon M.
dc.contributor.authorGriffith, Linda G.
dc.contributor.authorHammond, Paula T.
dc.date.accessioned2014-08-19T18:33:15Z
dc.date.available2014-08-19T18:33:15Z
dc.date.issued2012-09
dc.date.submitted2012-06
dc.identifier.issn1744-683X
dc.identifier.issn1744-6848
dc.identifier.urihttp://hdl.handle.net/1721.1/88913
dc.description.abstractAs a platform for investigating the individual effects of substrate stiffness, permeability, and ligand density on cellular behavior, we developed a set of hydrogels with stiffness tuned by polymer backbone rigidity, independent of cross-link density and concentration. Previous studies report that poly(propargyl-L-glutamate) (PPLG), synthesized by ring-opening polymerization of the N-carboxy anhydride of γ-propargyl-L-glutamate (γpLglu), adopts a rigid a-helix conformation: we hypothesized that a random copolymer (PPDLG) with equal amounts of γpLglu and γ-propargyl-D-glutamate (γpDglu) monomers would exhibit a more flexible random coil conformation. The resulting macromers exhibited narrow molecular weight distributions (PDI = 1.15) and were grafted with ethylene glycol groups using a highly efficient “click” azide/alkyne cycloaddition reaction with average grafting efficiency of 97% for PPLG and 85% for PPDLG. The polypeptide secondary structure, characterized via circular dichroism spectroscopy, FTIR spectroscopy, and dynamic light scattering, is indeed dependent upon monomer chirality: PPLG exhibits an α-helix conformation while PPDLG adopts a random coil conformation. Hydrogel networks produced by cross-linking either helical or random coil polypeptides with poly(ethylene glycol) (PEG) were analyzed for amount of swelling, gelation efficiency, and permeability to a model protein. In addition, the elastic modulus of helical and coil polypeptide gels was determined by AFM indentation in fluid. Importantly, we found that helical and coil polypeptide gels exhibited similar swelling and permeability but different stiffnesses, which correspond to predictions from the theory of semi-flexible chains.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01 EB10246)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systemsen_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c2sm26487ken_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleHelix versus coil polypeptide macromers: gel networks with decoupled stiffness and permeabilityen_US
dc.typeArticleen_US
dc.identifier.citationOelker, Abigail M., Shannon M. Morey, Linda G. Griffith, and Paula T. Hammond. “Helix Versus Coil Polypeptide Macromers: Gel Networks with Decoupled Stiffness and Permeability.” Soft Matter 8, no. 42 (2012): 10887.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorOelker, Abigail M.en_US
dc.contributor.mitauthorMorey, Shannon M.en_US
dc.contributor.mitauthorGriffith, Linda G.en_US
dc.contributor.mitauthorHammond, Paula T.en_US
dc.relation.journalSoft Matteren_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsOelker, Abigail M.; Morey, Shannon M.; Griffith, Linda G.; Hammond, Paula T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1801-5548
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record