MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanism of a flow-gated angiogenesis switch: early signaling events at cell–matrix and cell–cell junctions

Author(s)
Vickerman, Vernella; Kamm, Roger Dale
Thumbnail
DownloadKamm_Mechanism of.pdf (1.645Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
A bias towards angiogenesis from the venous circulation has long been known, but its cause remains unclear. Here we explore the possibility that high interstitial pressure in tumors and the resultant net filtration pressure gradient that would induce flow from the interstitium into the venous circulation or lymphatics could also be an important mechanical regulator of angiogenesis. The objective of this study was to test the hypothesis that basal-to-apical (B–A) transendothelial flow promotes angiogenesis and to investigate potential mechanisms. Macro- and microvascular endothelial monolayers were cultured on type I collagen gels in a microfluidic cell culture device and subjected to apical-to-basal (A–B) and B–A transendothelial flows. Samples were perfusion fixed and analyzed for morphological responses, localization and degree of phosphorylation of certain signaling proteins. Application of B–A, but not A–B flow, to cultured endothelial monolayers was found to promote capillary morphogenesis and resulted in distinct localization patterns of VE-cadherin and increased FAK phosphorylation. These results suggest that B–A flow triggers the transition of vascular endothelial cells from a quiescent to invasive phenotype and that the flow-mediated response involves signaling at cell–cell and cell–matrix interfaces. These results support the hypothesis that transendothelial pressure gradients resulting in B–A flow promotes sprouting angiogenesis and are consistent with early observations that tumor angiogenesis occurs from the venous side of the circulation.
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/89235
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Integrative Biology
Publisher
Royal Society of Chemistry
Citation
Vickerman, Vernella, and Roger D. Kamm. “Mechanism of a Flow-Gated Angiogenesis Switch: Early Signaling Events at Cell–matrix and Cell–cell Junctions.” Integr. Biol. 4, no. 8 (2012): 863.
Version: Author's final manuscript
ISSN
1757-9694
1757-9708

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.