MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Projection Games Conjecture and the NP-Hardness of ln n-Approximating Set-Cover

Author(s)
Moshkovitz Aaronson, Dana Hadar
Thumbnail
DownloadMoshkovitz_The projection.pdf (128.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We suggest the research agenda of establishing new hardness of approximation results based on the “projection games conjecture”, i.e., an instantiation of the Sliding Scale Conjecture of Bellare, Goldwasser, Lund and Russell to projection games. We pursue this line of research by establishing a tight NP-hardness result for the Set-Cover problem. Specifically, we show that under the projection games conjecture (in fact, under a quantitative version of the conjecture that is only slightly beyond the reach of current techniques), it is NP-hard to approximate Set-Cover on instances of size N to within (1 − α)ln N for arbitrarily small α > 0. Our reduction establishes a tight trade-off between the approximation accuracy α and the time required for the approximation 2[superscript NΩ(α)], assuming Sat requires exponential time. The reduction is obtained by modifying Feige’s reduction. The latter only provides a lower bound of 2[superscript NΩ(α/loglogN)] on the time required for (1 − α)ln N-approximating Set-Cover assuming Sat requires exponential time (note that N[superscript 1/loglogN] = N[superscript o(1)]). The modification uses a combinatorial construction of a bipartite graph in which any coloring of the first side that does not use a color for more than a small fraction of the vertices, makes most vertices on the other side have their neighbors all colored in different colors.
Date issued
2012
URI
http://hdl.handle.net/1721.1/90484
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
Publisher
Springer-Verlag
Citation
Moshkovitz, Dana. “The Projection Games Conjecture and the NP-Hardness of Ln n-Approximating Set-Cover.” Lecture Notes in Computer Science (2012): 276–287.
Version: Author's final manuscript
ISBN
978-3-642-32511-3
978-3-642-32512-0
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.