Show simple item record

dc.contributor.authorMoshkovitz Aaronson, Dana Hadar
dc.date.accessioned2014-09-30T16:56:24Z
dc.date.available2014-09-30T16:56:24Z
dc.date.issued2012
dc.identifier.isbn978-3-642-32511-3
dc.identifier.isbn978-3-642-32512-0
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/90484
dc.description.abstractWe suggest the research agenda of establishing new hardness of approximation results based on the “projection games conjecture”, i.e., an instantiation of the Sliding Scale Conjecture of Bellare, Goldwasser, Lund and Russell to projection games. We pursue this line of research by establishing a tight NP-hardness result for the Set-Cover problem. Specifically, we show that under the projection games conjecture (in fact, under a quantitative version of the conjecture that is only slightly beyond the reach of current techniques), it is NP-hard to approximate Set-Cover on instances of size N to within (1 − α)ln N for arbitrarily small α > 0. Our reduction establishes a tight trade-off between the approximation accuracy α and the time required for the approximation 2[superscript NΩ(α)], assuming Sat requires exponential time. The reduction is obtained by modifying Feige’s reduction. The latter only provides a lower bound of 2[superscript NΩ(α/loglogN)] on the time required for (1 − α)ln N-approximating Set-Cover assuming Sat requires exponential time (note that N[superscript 1/loglogN] = N[superscript o(1)]). The modification uses a combinatorial construction of a bipartite graph in which any coloring of the first side that does not use a color for more than a small fraction of the vertices, makes most vertices on the other side have their neighbors all colored in different colors.en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-32512-0_24en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleThe Projection Games Conjecture and the NP-Hardness of ln n-Approximating Set-Coveren_US
dc.typeArticleen_US
dc.identifier.citationMoshkovitz, Dana. “The Projection Games Conjecture and the NP-Hardness of Ln n-Approximating Set-Cover.” Lecture Notes in Computer Science (2012): 276–287.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorMoshkovitz Aaronson, Dana Hadaren_US
dc.relation.journalApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniquesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMoshkovitz, Danaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5157-8086
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record