MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quasi-static SIMO fading channels at finite blocklength

Author(s)
Yang, Wei; Durisi, Giuseppe; Koch, Tobias; Polyanskiy, Yury
Thumbnail
DownloadPolyanskiy_Quasi-static.pdf (132.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We investigate the maximal achievable rate for a given blocklength and error probability over quasi-static single-input multiple-output (SIMO) fading channels. Under mild conditions on the channel gains, it is shown that the channel dispersion is zero regardless of whether the fading realizations are available at the transmitter and/or the receiver. The result follows from computationally and analytically tractable converse and achievability bounds. Through numerical evaluation, we verify that, in some scenarios, zero dispersion indeed entails fast convergence to outage capacity as the blocklength increases. In the example of a particular 1×2 SIMO Rician channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared to the blocklength required for an AWGN channel with the same capacity.
Date issued
2013-07
URI
http://hdl.handle.net/1721.1/90563
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 2013 IEEE International Symposium on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Yang, Wei, Giuseppe Durisi, Tobias Koch, and Yury Polyanskiy. “Quasi-Static SIMO Fading Channels at Finite Blocklength.” 2013 IEEE International Symposium on Information Theory (July 2013).
Version: Author's final manuscript
ISBN
978-1-4799-0446-4
ISSN
2157-8095

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.