Show simple item record

dc.contributor.authorSoltero, Daniel E.
dc.contributor.authorSchwager, Mac
dc.contributor.authorRus, Daniela L.
dc.date.accessioned2014-10-07T17:34:36Z
dc.date.available2014-10-07T17:34:36Z
dc.date.issued2012-10
dc.identifier.isbn978-1-4673-1736-8
dc.identifier.isbn978-1-4673-1737-5
dc.identifier.isbn978-1-4673-1735-1
dc.identifier.issn2153-0858
dc.identifier.urihttp://hdl.handle.net/1721.1/90588
dc.description.abstractWe present an online algorithm for a robot to shape its path to a locally optimal configuration for collecting information in an unknown dynamic environment. As the robot travels along its path, it identifies both where the environment is changing, and how fast it is changing. The algorithm then morphs the robot's path online to concentrate on the dynamic areas in the environment in proportion to their rate of change. A Lyapunov-like stability proof is used to show that, under our proposed path shaping algorithm, the path converges to a locally optimal configuration according to a Voronoi-based coverage criterion. The path shaping algorithm is then combined with a previously introduced speed controller to produce guaranteed persistent monitoring trajectories for a robot in an unknown dynamic environment. Simulation and experimental results with a quadrotor robot support the proposed approach.en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1051)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship (Award 0645960)en_US
dc.description.sponsorshipBoeing Companyen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IROS.2012.6385730en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleGenerating informative paths for persistent sensing in unknown environmentsen_US
dc.typeArticleen_US
dc.identifier.citationSoltero, Daniel E., Mac Schwager, and Daniela Rus. “Generating Informative Paths for Persistent Sensing in Unknown Environments.” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (October 2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Engineeringen_US
dc.contributor.mitauthorSoltero, Daniel E.en_US
dc.contributor.mitauthorRus, Daniela L.en_US
dc.relation.journalProceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsSoltero, Daniel E.; Schwager, Mac; Rus, Danielaen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record