MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-parametric inference and coordination for distributed robotics

Author(s)
Julian, Brian John; Angermann, Michael; Rus, Daniela L.
Thumbnail
DownloadRus_Non-parametric inference.pdf (1.788Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper presents non-parametric methods to infer the state of an environment by distributively controlling robots equipped with sensors. Each robot represents its belief of the environment state with a weighted sample set, which is used to draw likely observations to approximate the gradient of mutual information. The gradient leads to a novel distributed controller that continuously moves the robots to maximize the informativeness of the next joint observation, which is then used to update the weighted sample set via a sequential Bayesian filter. The incorporated non-parametric methods are able to robustly represent the environment state and robots' observations even when they are modeled as continuous-valued random variables having complicated multimodal distributions. In addition, a consensus-based algorithm allows for the distributed approximation of the joint measurement probabilities, where these approximations provably converge to the true probabilities even when the number of robots, the maximum in/out degree, and the network diameter are unknown. The approach is implemented for five quadrotor flying robots deployed over a large outdoor environment, and the results of two separate exploration tasks are discussed.
Date issued
2012-12
URI
http://hdl.handle.net/1721.1/90614
Department
Lincoln Laboratory; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. School of Engineering
Journal
Proceedings of the 2012 51st IEEE Conference on Decision and Control (CDC)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Julian, Brian J., Michael Angermann, and Daniela Rus. “Non-Parametric Inference and Coordination for Distributed Robotics.” 2012 51st IEEE Conference on Decision and Control (CDC) (December 2012).
Version: Author's final manuscript
ISBN
978-1-4673-2066-5
978-1-4673-2065-8
978-1-4673-2063-4
978-1-4673-2064-1
ISSN
0743-1546

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.