Show simple item record

dc.contributor.authorJulian, Brian John
dc.contributor.authorAngermann, Michael
dc.contributor.authorRus, Daniela L.
dc.date.accessioned2014-10-07T19:30:20Z
dc.date.available2014-10-07T19:30:20Z
dc.date.issued2012-12
dc.identifier.isbn978-1-4673-2066-5
dc.identifier.isbn978-1-4673-2065-8
dc.identifier.isbn978-1-4673-2063-4
dc.identifier.isbn978-1-4673-2064-1
dc.identifier.issn0743-1546
dc.identifier.urihttp://hdl.handle.net/1721.1/90614
dc.description.abstractThis paper presents non-parametric methods to infer the state of an environment by distributively controlling robots equipped with sensors. Each robot represents its belief of the environment state with a weighted sample set, which is used to draw likely observations to approximate the gradient of mutual information. The gradient leads to a novel distributed controller that continuously moves the robots to maximize the informativeness of the next joint observation, which is then used to update the weighted sample set via a sequential Bayesian filter. The incorporated non-parametric methods are able to robustly represent the environment state and robots' observations even when they are modeled as continuous-valued random variables having complicated multimodal distributions. In addition, a consensus-based algorithm allows for the distributed approximation of the joint measurement probabilities, where these approximations provably converge to the true probabilities even when the number of robots, the maximum in/out degree, and the network diameter are unknown. The approach is implemented for five quadrotor flying robots deployed over a large outdoor environment, and the results of two separate exploration tasks are discussed.en_US
dc.description.sponsorshipUnited States. Air Force (Contract FA8721-05-C-0002)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-09-1-1051)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant EFRI-0735953)en_US
dc.description.sponsorshipLincoln Laboratoryen_US
dc.description.sponsorshipBoeing Companyen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CDC.2012.6427043en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleNon-parametric inference and coordination for distributed roboticsen_US
dc.typeArticleen_US
dc.identifier.citationJulian, Brian J., Michael Angermann, and Daniela Rus. “Non-Parametric Inference and Coordination for Distributed Robotics.” 2012 51st IEEE Conference on Decision and Control (CDC) (December 2012).en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Engineeringen_US
dc.contributor.mitauthorJulian, Brian Johnen_US
dc.contributor.mitauthorRus, Daniela L.en_US
dc.relation.journalProceedings of the 2012 51st IEEE Conference on Decision and Control (CDC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsJulian, Brian J.; Angermann, Michael; Rus, Danielaen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record