MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A decentralized control policy for adaptive information gathering in hazardous environments

Author(s)
Dames, Philip; Schwager, Mac; Kumar, Vijay; Rus, Daniela L.
Thumbnail
DownloadRus_A decentralized.pdf (380.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper proposes an algorithm for driving a group of resource-constrained robots with noisy sensors to localize an unknown number of targets in an environment, while avoiding hazards at unknown positions that cause the robots to fail. The algorithm is based upon the analytic gradient of mutual information of the target locations and measurements and offers two primary improvements over previous algorithms [6], [13]. Firstly, it is decentralized. This follows from an approximation to mutual information based upon the fact that the robots' sensors and environmental hazards have a finite area of influence. Secondly, it allows targets to be localized arbitrarily precisely with limited computational resources. This is done using an adaptive cellular decomposition of the environment, so that only areas that likely contain a target are given finer resolution. The estimation is built upon finite set statistics, which provides a rigorous, probabilistic framework for multi-target tracking. The algorithm is shown to perform favorably compared to existing approximation methods in simulation.
Date issued
2012-12
URI
http://hdl.handle.net/1721.1/90616
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. School of Engineering
Journal
Proceedings of the 2012 51st IEEE Conference on Decision and Control (CDC)
Citation
Dames, Philip, Mac Schwager, Vijay Kumar, and Daniela Rus. “A Decentralized Control Policy for Adaptive Information Gathering in Hazardous Environments.” 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (December 2012).
Version: Author's final manuscript
ISBN
978-1-4673-2066-5
978-1-4673-2065-8
978-1-4673-2063-4
978-1-4673-2064-1
ISSN
0743-1546

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.