Show simple item record

dc.contributor.authorDames, Philip
dc.contributor.authorSchwager, Mac
dc.contributor.authorKumar, Vijay
dc.contributor.authorRus, Daniela L.
dc.date.accessioned2014-10-07T19:50:21Z
dc.date.available2014-10-07T19:50:21Z
dc.date.issued2012-12
dc.identifier.isbn978-1-4673-2066-5
dc.identifier.isbn978-1-4673-2065-8
dc.identifier.isbn978-1-4673-2063-4
dc.identifier.isbn978-1-4673-2064-1
dc.identifier.issn0743-1546
dc.identifier.urihttp://hdl.handle.net/1721.1/90616
dc.description.abstractThis paper proposes an algorithm for driving a group of resource-constrained robots with noisy sensors to localize an unknown number of targets in an environment, while avoiding hazards at unknown positions that cause the robots to fail. The algorithm is based upon the analytic gradient of mutual information of the target locations and measurements and offers two primary improvements over previous algorithms [6], [13]. Firstly, it is decentralized. This follows from an approximation to mutual information based upon the fact that the robots' sensors and environmental hazards have a finite area of influence. Secondly, it allows targets to be localized arbitrarily precisely with limited computational resources. This is done using an adaptive cellular decomposition of the environment, so that only areas that likely contain a target are given finer resolution. The estimation is built upon finite set statistics, which provides a rigorous, probabilistic framework for multi-target tracking. The algorithm is shown to perform favorably compared to existing approximation methods in simulation.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA9550-10-1-0567)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-07-1-0829)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-09-1-1051)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-09-1-1031)en_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CDC.2012.6426239en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleA decentralized control policy for adaptive information gathering in hazardous environmentsen_US
dc.typeArticleen_US
dc.identifier.citationDames, Philip, Mac Schwager, Vijay Kumar, and Daniela Rus. “A Decentralized Control Policy for Adaptive Information Gathering in Hazardous Environments.” 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (December 2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Engineeringen_US
dc.contributor.mitauthorRus, Daniela L.en_US
dc.relation.journalProceedings of the 2012 51st IEEE Conference on Decision and Control (CDC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDames, Philip; Schwager, Mac; Kumar, Vijay; Rus, Danielaen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record