MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of polymer chemistry on globular protein–polymer block copolymer self-assembly

Author(s)
Chang, Dongsook; Tang, Shengchang; Olsen, Bradley D.; Lam, Christopher Nguyen
Thumbnail
DownloadOlsen_Effect of polymer.pdf (1.335Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial http://creativecommons.org/licenses/by-nc/3.0/
Metadata
Show full item record
Abstract
Bioconjugates of the model red fluorescent protein mCherry and synthetic polymer blocks with different hydrogen bonding functionalities show that the chemistry of the polymer block has a large effect on both ordering transitions and the type of nanostructures formed during bioconjugate self-assembly. The phase behaviours of mCherry-b-poly(hydroxypropyl acrylate) (PHPA) and mCherry-b-poly(oligoethylene glycol acrylate) (POEGA) in concentrated aqueous solution show that changes in polymer chemistry result in increase in the order–disorder transition concentrations (C[subscript ODT]s) by approximately 10–15 wt% compared to a previously studied globular protein–polymer block copolymer, mCherry-b-poly(N-isopropylacrylamide) (PNIPAM). The C[subscript ODT]s are always minimized for symmetric bioconjugates, consistent with the importance of protein–polymer interactions in self-assembly. Both mCherry-b-PHPA and mCherry-b-POEGA also form phases that have not previously been observed in other globular protein–polymer conjugates: mCherry-b-PHPA forms a cubic phase that can be indexed to Ia[bar over 3]d and mCherry-b-POEGA displays coexistence of lamellae and a cubic Ia[bar over 3]d structure over a narrow range of concentration and temperature. Several common behaviours are also revealed by comparison of different polymer blocks. With increasing concentration and temperature, ordered phases always appear in the order lamellar, cubic/PL, and hexagonal, although not all phases are observed in all materials. High concentration solutions (near 80 wt%) also undergo a re-entrant order–disorder transition to form nematic liquid crystalline phases, regardless of the polymer block chemistry.
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/90939
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Polymer Chemistry
Publisher
Royal Society of Chemistry
Citation
Chang, Dongsook, Christopher N. Lam, Shengchang Tang, and Bradley D. Olsen. “Effect of Polymer Chemistry on Globular Protein–polymer Block Copolymer Self-Assembly.” Polym. Chem. 5, no. 17 (2014): 4884–4895. © Royal Society of Chemistry
Version: Final published version
ISSN
1759-9954
1759-9962

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.