Show simple item record

dc.contributor.authorChang, Dongsook
dc.contributor.authorTang, Shengchang
dc.contributor.authorOlsen, Bradley D.
dc.contributor.authorLam, Christopher Nguyen
dc.date.accessioned2014-10-15T13:27:10Z
dc.date.available2014-10-15T13:27:10Z
dc.date.issued2014-06
dc.date.submitted2014-03
dc.identifier.issn1759-9954
dc.identifier.issn1759-9962
dc.identifier.urihttp://hdl.handle.net/1721.1/90939
dc.description.abstractBioconjugates of the model red fluorescent protein mCherry and synthetic polymer blocks with different hydrogen bonding functionalities show that the chemistry of the polymer block has a large effect on both ordering transitions and the type of nanostructures formed during bioconjugate self-assembly. The phase behaviours of mCherry-b-poly(hydroxypropyl acrylate) (PHPA) and mCherry-b-poly(oligoethylene glycol acrylate) (POEGA) in concentrated aqueous solution show that changes in polymer chemistry result in increase in the order–disorder transition concentrations (C[subscript ODT]s) by approximately 10–15 wt% compared to a previously studied globular protein–polymer block copolymer, mCherry-b-poly(N-isopropylacrylamide) (PNIPAM). The C[subscript ODT]s are always minimized for symmetric bioconjugates, consistent with the importance of protein–polymer interactions in self-assembly. Both mCherry-b-PHPA and mCherry-b-POEGA also form phases that have not previously been observed in other globular protein–polymer conjugates: mCherry-b-PHPA forms a cubic phase that can be indexed to Ia[bar over 3]d and mCherry-b-POEGA displays coexistence of lamellae and a cubic Ia[bar over 3]d structure over a narrow range of concentration and temperature. Several common behaviours are also revealed by comparison of different polymer blocks. With increasing concentration and temperature, ordered phases always appear in the order lamellar, cubic/PL, and hexagonal, although not all phases are observed in all materials. High concentration solutions (near 80 wt%) also undergo a re-entrant order–disorder transition to form nematic liquid crystalline phases, regardless of the polymer block chemistry.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Award FA9550-12-0259)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0007106)en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c4py00448een_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRSCen_US
dc.titleEffect of polymer chemistry on globular protein–polymer block copolymer self-assemblyen_US
dc.typeArticleen_US
dc.identifier.citationChang, Dongsook, Christopher N. Lam, Shengchang Tang, and Bradley D. Olsen. “Effect of Polymer Chemistry on Globular Protein–polymer Block Copolymer Self-Assembly.” Polym. Chem. 5, no. 17 (2014): 4884–4895. © Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorChang, Dongsooken_US
dc.contributor.mitauthorLam, Christopher Nguyenen_US
dc.contributor.mitauthorTang, Shengchangen_US
dc.contributor.mitauthorOlsen, Bradley D.en_US
dc.relation.journalPolymer Chemistryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChang, Dongsook; Lam, Christopher N.; Tang, Shengchang; Olsen, Bradley D.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0589-0965
dc.identifier.orcidhttps://orcid.org/0000-0002-7272-7140
dc.identifier.orcidhttps://orcid.org/0000-0002-7845-6425
dc.identifier.orcidhttps://orcid.org/0000-0001-9264-8610
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record