Show simple item record

dc.contributor.authorSalakhutdinov, R.
dc.contributor.authorTenenbaum, Joshua B.
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2014-10-15T18:35:14Z
dc.date.available2014-10-15T18:35:14Z
dc.date.issued2013-08
dc.date.submitted2012-08
dc.identifier.issn0162-8828
dc.identifier.issn2160-9292
dc.identifier.urihttp://hdl.handle.net/1721.1/90947
dc.description.abstractWe introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.en_US
dc.description.sponsorshipQUALCOMM Inc.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR MURI Grant 1015GNA126)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR N00014-07-1-0937)en_US
dc.description.sponsorshipUnited States. Army Research Office (ARO grant W911NF-08-1-0242)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TPAMI.2012.269en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleLearning with Hierarchical-Deep Modelsen_US
dc.typeArticleen_US
dc.identifier.citationSalakhutdinov, R., J. B. Tenenbaum, and A. Torralba. “Learning with Hierarchical-Deep Models.” IEEE Trans. Pattern Anal. Mach. Intell. 35, no. 8 (August 2013): 1958–1971.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorTenenbaum, Joshua B.en_US
dc.contributor.mitauthorTorralba, Antonioen_US
dc.relation.journalIEEE Transactions on Pattern Analysis and Machine Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSalakhutdinov, R.; Tenenbaum, J. B.; Torralba, A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1925-2035
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record