MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combinatorial discovery of polymers resistant to bacterial attachment

Author(s)
Hook, Andrew L.; Chang, Chien-Yi; Yang, Jing; Luckett, Jeni; Cockayne, Alan; Atkinson, Steve; Mei, Ying; Bayston, Roger; Irvine, Derek J.; Williams, Paul; Davies, Martyn C.; Alexander, Morgan R.; Anderson, Daniel Griffith; Langer, Robert S; ... Show more Show less
Thumbnail
DownloadAnderson_Combinatorial discovery.pdf (2.593Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Bacterial attachment and subsequent biofilm formation pose key challenges to the optimal performance of medical devices. In this study, we determined the attachment of selected bacterial species to hundreds of polymeric materials in a high-throughput microarray format. Using this method, we identified a group of structurally related materials comprising ester and cyclic hydrocarbon moieties that substantially reduced the attachment of pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli). Coating silicone with these 'hit' materials achieved up to a 30-fold (96.7%) reduction in the surface area covered by bacteria compared with a commercial silver hydrogel coating in vitro, and the same material coatings were effective at reducing bacterial attachment in vivo in a mouse implant infection model. These polymers represent a class of materials that reduce the attachment of bacteria that could not have been predicted to have this property from the current understanding of bacteria-surface interactions.
Date issued
2012-08
URI
http://hdl.handle.net/1721.1/91141
Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Chemical Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Nature Biotechnology
Publisher
Nature Publishing Group
Citation
Hook, Andrew L, Chien-Yi Chang, Jing Yang, Jeni Luckett, Alan Cockayne, Steve Atkinson, Ying Mei, et al. “Combinatorial Discovery of Polymers Resistant to Bacterial Attachment.” Nature Biotechnology 30, no. 9 (August 12, 2012): 868–875.
Version: Author's final manuscript
ISSN
1087-0156
1546-1696

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.