Show simple item record

dc.contributor.authorHook, Andrew L.
dc.contributor.authorChang, Chien-Yi
dc.contributor.authorYang, Jing
dc.contributor.authorLuckett, Jeni
dc.contributor.authorCockayne, Alan
dc.contributor.authorAtkinson, Steve
dc.contributor.authorMei, Ying
dc.contributor.authorBayston, Roger
dc.contributor.authorIrvine, Derek J.
dc.contributor.authorLanger, Robert
dc.contributor.authorWilliams, Paul
dc.contributor.authorDavies, Martyn C.
dc.contributor.authorAlexander, Morgan R.
dc.contributor.authorAnderson, Daniel Griffith
dc.date.accessioned2014-10-21T19:17:52Z
dc.date.available2014-10-21T19:17:52Z
dc.date.issued2012-08
dc.date.submitted2012-06
dc.identifier.issn1087-0156
dc.identifier.issn1546-1696
dc.identifier.urihttp://hdl.handle.net/1721.1/91141
dc.description.abstractBacterial attachment and subsequent biofilm formation pose key challenges to the optimal performance of medical devices. In this study, we determined the attachment of selected bacterial species to hundreds of polymeric materials in a high-throughput microarray format. Using this method, we identified a group of structurally related materials comprising ester and cyclic hydrocarbon moieties that substantially reduced the attachment of pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli). Coating silicone with these 'hit' materials achieved up to a 30-fold (96.7%) reduction in the surface area covered by bacteria compared with a commercial silver hydrogel coating in vitro, and the same material coatings were effective at reducing bacterial attachment in vivo in a mouse implant infection model. These polymers represent a class of materials that reduce the attachment of bacteria that could not have been predicted to have this property from the current understanding of bacteria-surface interactions.en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nbt.2316en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleCombinatorial discovery of polymers resistant to bacterial attachmenten_US
dc.typeArticleen_US
dc.identifier.citationHook, Andrew L, Chien-Yi Chang, Jing Yang, Jeni Luckett, Alan Cockayne, Steve Atkinson, Ying Mei, et al. “Combinatorial Discovery of Polymers Resistant to Bacterial Attachment.” Nature Biotechnology 30, no. 9 (August 12, 2012): 868–875.en_US
dc.contributor.departmentDavid H. Koch Institute for Integrative Cancer Research at MITen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorMei, Yingen_US
dc.contributor.mitauthorLanger, Roberten_US
dc.contributor.mitauthorAnderson, Daniel Griffithen_US
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHook, Andrew L; Chang, Chien-Yi; Yang, Jing; Luckett, Jeni; Cockayne, Alan; Atkinson, Steve; Mei, Ying; Bayston, Roger; Irvine, Derek J; Langer, Robert; Anderson, Daniel G; Williams, Paul; Davies, Martyn C; Alexander, Morgan Ren_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record