MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The maximal length of a k-separator permutation

Author(s)
Gunby, Benjamin P.
Thumbnail
DownloadGunby-2014-The maximal length.pdf (290.1Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/
Metadata
Show full item record
Abstract
A permutation σ ∈ S[subscript n] is a k-separator if all of its patterns of length k are distinct. Let F(k) denote the maximal length of a k-separator. Hegarty (2013) showed that k + ⌊√2k − 1⌋ − 1 ≤ F(k) ≤ k + ⌊√2k − 3⌋, and conjectured that F(k) = k + ⌊√2k − 1⌋ − 1. This paper will strengthen the upper bound to prove the conjecture for all sufficiently large k (in particular, for all k ≥ 320801).
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/91153
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Electronic Journal of Combinatorics
Publisher
Electronic Journal of Combinatorics
Citation
Gunby, Benjamin. "The maximal length of a k-separator permutation." The Electronic Journal of Combinatorics Volume 21, Issue 3 (2014).
Version: Final published version
ISSN
1077-8926

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.