Show simple item record

dc.contributor.authorGunby, Benjamin P.
dc.date.accessioned2014-10-23T16:57:43Z
dc.date.available2014-10-23T16:57:43Z
dc.date.issued2014-08
dc.date.submitted2013-09
dc.identifier.issn1077-8926
dc.identifier.urihttp://hdl.handle.net/1721.1/91153
dc.description.abstractA permutation σ ∈ S[subscript n] is a k-separator if all of its patterns of length k are distinct. Let F(k) denote the maximal length of a k-separator. Hegarty (2013) showed that k + ⌊√2k − 1⌋ − 1 ≤ F(k) ≤ k + ⌊√2k − 3⌋, and conjectured that F(k) = k + ⌊√2k − 1⌋ − 1. This paper will strengthen the upper bound to prove the conjecture for all sufficiently large k (in particular, for all k ≥ 320801).en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Division of Materials Sciences and Engineering (Grant 1062709)en_US
dc.description.sponsorshipUnited States. National Security Agency (Grant H98230-11-1-0224)en_US
dc.language.isoen_US
dc.publisherElectronic Journal of Combinatoricsen_US
dc.relation.isversionofhttp://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i3p19en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/en_US
dc.sourceElectronic Journal of Combinatoricsen_US
dc.titleThe maximal length of a k-separator permutationen_US
dc.typeArticleen_US
dc.identifier.citationGunby, Benjamin. "The maximal length of a k-separator permutation." The Electronic Journal of Combinatorics Volume 21, Issue 3 (2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGunby, Benjamin P.en_US
dc.relation.journalElectronic Journal of Combinatoricsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGunby, Benjaminen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record