MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanog-like Regulates Endoderm Formation through the Mxtx2-Nodal Pathway

Author(s)
Xu, Cong; Fan, Zi Peng; Fogley, Rachel; DiBiase, Anthony; Trompouki, Eirini; Unternaehrer, Juli; Xiong, Fengzhu; Torregroza, Ingrid; Evans, Todd; Megason, Sean G.; Daley, George Q.; Schier, Alexander F.; Young, Richard A.; Zon, Leonard I.; Muller, Patrick; Young, Richard A.; ... Show more Show less
Thumbnail
DownloadXu-2012-Nanog-like Regulates.pdf (2.117Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In mammalian embryonic stem cells, the acquisition of pluripotency is dependent on Nanog, but the in vivo analysis of Nanog has been hampered by its requirement for early mouse development. In an effort to examine the role of Nanog in vivo, we identified a zebrafish Nanog ortholog and found that its knockdown impaired endoderm formation. Genome-wide transcription analysis revealed that nanog-like morphants fail to develop the extraembryonic yolk syncytial layer (YSL), which produces Nodal, required for endoderm induction. We examined the genes that were regulated by Nanog-like and identified the homeobox gene mxtx2, which is both necessary and sufficient for YSL induction. Chromatin immunoprecipitation assays and genetic studies indicated that Nanog-like directly activates mxtx2, which, in turn, specifies the YSL lineage by directly activating YSL genes. Our study identifies a Nanog-like-Mxtx2-Nodal pathway and establishes a role for Nanog-like in regulating the formation of the extraembryonic tissue required for endoderm induction.
Date issued
2012-03
URI
http://hdl.handle.net/1721.1/91520
Department
Massachusetts Institute of Technology. Computational and Systems Biology Program; Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Developmental Cell
Publisher
Elsevier
Citation
Xu, Cong, Zi Peng Fan, Patrick Muller, Rachel Fogley, Anthony DiBiase, Eirini Trompouki, Juli Unternaehrer, et al. “Nanog-Like Regulates Endoderm Formation through the Mxtx2-Nodal Pathway.” Developmental Cell 22, no. 3 (March 2012): 625–638. © 2012 Elsevier Inc.
Version: Final published version
ISSN
15345807
1878-1551

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.