Show simple item record

dc.contributor.authorIverson, Nicole M.
dc.contributor.authorBarone, Paul W.
dc.contributor.authorShandell, Mia
dc.contributor.authorTrudel, Laura J.
dc.contributor.authorSen, Selda
dc.contributor.authorSen, Fatih
dc.contributor.authorIvanov, Vsevolod
dc.contributor.authorAtolia, Esha
dc.contributor.authorFarias, Edgardo
dc.contributor.authorMcNicholas, Thomas P.
dc.contributor.authorReuel, Nigel
dc.contributor.authorParry, Nicola M. A.
dc.contributor.authorWogan, Gerald N.
dc.contributor.authorStrano, Michael S.
dc.date.accessioned2014-11-14T18:37:30Z
dc.date.available2014-11-14T18:37:30Z
dc.date.issued2013-11
dc.date.submitted2013-02
dc.identifier.issn1748-3387
dc.identifier.issn1748-3395
dc.identifier.urihttp://hdl.handle.net/1721.1/91579
dc.description.abstractSingle-walled carbon nanotubes are particularly attractive for biomedical applications, because they exhibit a fluorescent signal in a spectral region where there is minimal interference from biological media. Although single-walled carbon nanotubes have been used as highly sensitive detectors for various compounds, their use as in vivo biomarkers requires the simultaneous optimization of various parameters, including biocompatibility, molecular recognition, high fluorescence quantum efficiency and signal transduction. Here we show that a polyethylene glycol ligated copolymer stabilizes near-infrared-fluorescent single-walled carbon nanotubes sensors in solution, enabling intravenous injection into mice and the selective detection of local nitric oxide concentration with a detection limit of 1 µM. The half-life for liver retention is 4 h, with sensors clearing the lungs within 2 h after injection, thus avoiding a dominant route of in vivo nanotoxicology. After localization within the liver, it is possible to follow the transient inflammation using nitric oxide as a marker and signalling molecule. To this end, we also report a spatial-spectral imaging algorithm to deconvolute fluorescence intensity and spatial information from measurements. Finally, we demonstrate that alginate-encapsulated single-walled carbon nanotubes can function as implantable inflammation sensors for nitric oxide detection, with no intrinsic immune reactivity or other adverse response for more than 400 days.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (T32 Training Grant in Environmental Toxicology ES007020)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant P01 CA26731)en_US
dc.description.sponsorshipNational Institute of Environmental Health Sciences (Grant P30 ES002109)en_US
dc.description.sponsorshipArnold and Mabel Beckman Foundation (Young Investigator Award)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Presidential Early Career Award for Scientists and Engineersen_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK 2211 Research Fellowship Programme)en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK 2214 Research Fellowship Programme)en_US
dc.description.sponsorshipMiddle East Technical University. Faculty Development Programmeen_US
dc.description.sponsorshipSanofi Aventis (Firm) (Biomedical Innovation Grant)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nnano.2013.222en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleIn vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubesen_US
dc.typeArticleen_US
dc.identifier.citationIverson, Nicole M., Paul W. Barone, Mia Shandell, Laura J. Trudel, Selda Sen, Fatih Sen, Vsevolod Ivanov, et al. “In Vivo Biosensing via Tissue-Localizable Near-Infrared-Fluorescent Single-Walled Carbon Nanotubes.” Nature Nanotechnology 8, no. 11 (November 3, 2013): 873–880.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Biomedical Innovationen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Division of Comparative Medicineen_US
dc.contributor.mitauthorIverson, Nicole M.en_US
dc.contributor.mitauthorBarone, Paul W.en_US
dc.contributor.mitauthorShandell, Miaen_US
dc.contributor.mitauthorSen, Seldaen_US
dc.contributor.mitauthorSen, Fatihen_US
dc.contributor.mitauthorMcNicholas, Thomas P.en_US
dc.contributor.mitauthorReuel, Nigelen_US
dc.contributor.mitauthorStrano, Michael S.en_US
dc.contributor.mitauthorTrudel, Laura J.en_US
dc.contributor.mitauthorIvanov, Vsevoloden_US
dc.contributor.mitauthorAtolia, Eshaen_US
dc.contributor.mitauthorFarias, Edgardoen_US
dc.contributor.mitauthorWogan, Gerald N.en_US
dc.contributor.mitauthorParry, Nicola M. A.en_US
dc.relation.journalNature Nanotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsIverson, Nicole M.; Barone, Paul W.; Shandell, Mia; Trudel, Laura J.; Sen, Selda; Sen, Fatih; Ivanov, Vsevolod; Atolia, Esha; Farias, Edgardo; McNicholas, Thomas P.; Reuel, Nigel; Parry, Nicola M. A.; Wogan, Gerald N.; Strano, Michael S.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0771-9889
dc.identifier.orcidhttps://orcid.org/0000-0003-2944-808X
dc.identifier.orcidhttps://orcid.org/0000-0002-5166-1410
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record