Show simple item record

dc.contributor.authorTavakoli Nia, Hadi
dc.contributor.authorSoltani Bozchalooi, Iman
dc.contributor.authorLi, Yang
dc.contributor.authorHan, Lin
dc.contributor.authorHung, Han-Hwa K.
dc.contributor.authorFrank, Eliot
dc.contributor.authorYoucef-Toumi, Kamal
dc.contributor.authorOrtiz, Christine
dc.contributor.authorGrodzinsky, Alan J.
dc.date.accessioned2014-12-02T21:58:12Z
dc.date.available2014-12-02T21:58:12Z
dc.date.issued2013-04
dc.date.submitted2012-12
dc.identifier.issn00063495
dc.identifier.urihttp://hdl.handle.net/1721.1/92000
dc.description.abstractUtilizing a newly developed atomic-force-microscopy-based wide-frequency rheology system, we measured the dynamic nanomechanical behavior of normal and glycosaminoglycan (GAG)-depleted cartilage, the latter representing matrix degradation that occurs at the earliest stages of osteoarthritis. We observed unique variations in the frequency-dependent stiffness and hydraulic permeability of cartilage in the 1 Hz-to-10 kHz range, a frequency range that is relevant to joint motions from normal ambulation to high-frequency impact loading. Measurement in this frequency range is well beyond the capabilities of typical commercial atomic force microscopes. We showed that the dynamic modulus of cartilage undergoes a dramatic alteration after GAG loss, even with the collagen network still intact: whereas the magnitude of the dynamic modulus decreased two- to threefold at higher frequencies, the peak frequency of the phase angle of the modulus (representing fluid-solid frictional dissipation) increased 15-fold from 55 Hz in normal cartilage to 800 Hz after GAG depletion. These results, based on a fibril-reinforced poroelastic finite-element model, demonstrated that GAG loss caused a dramatic increase in cartilage hydraulic permeability (up to 25-fold), suggesting that early osteoarthritic cartilage is more vulnerable to higher loading rates than to the conventionally studied “loading magnitude”. Thus, over the wide frequency range of joint motion during daily activities, hydraulic permeability appears the most sensitive marker of early tissue degradation.en_US
dc.description.sponsorshipWhitaker Foundation (Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant CMMI- 0758651)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant AR060331)en_US
dc.language.isoen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.bpj.2013.02.048en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevier Open Archiveen_US
dc.titleHigh-Bandwidth AFM-Based Rheology Reveals that Cartilage is Most Sensitive to High Loading Rates at Early Stages of Impairmenten_US
dc.typeArticleen_US
dc.identifier.citationNia, Hadi Tavakoli, Iman S. Bozchalooi, Yang Li, Lin Han, Han-Hwa Hung, Eliot Frank, Kamal Youcef-Toumi, Christine Ortiz, and Alan Grodzinsky. “High-Bandwidth AFM-Based Rheology Reveals That Cartilage Is Most Sensitive to High Loading Rates at Early Stages of Impairment.” Biophysical Journal 104, no. 7 (April 2013): 1529–1537.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Biomedical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorTavakoli Nia, Hadien_US
dc.contributor.mitauthorSoltani Bozchalooi, Imanen_US
dc.contributor.mitauthorLi, Yangen_US
dc.contributor.mitauthorHan, Linen_US
dc.contributor.mitauthorHung, Han-Hwa K.en_US
dc.contributor.mitauthorFrank, Elioten_US
dc.contributor.mitauthorYoucef-Toumi, Kamalen_US
dc.contributor.mitauthorOrtiz, Christineen_US
dc.contributor.mitauthorGrodzinsky, Alan J.en_US
dc.relation.journalBiophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNia, Hadi Tavakoli; Bozchalooi, Iman S.; Li, Yang; Han, Lin; Hung, Han-Hwa; Frank, Eliot; Youcef-Toumi, Kamal; Ortiz, Christine; Grodzinsky, Alanen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3511-5679
dc.identifier.orcidhttps://orcid.org/0000-0003-1970-9901
dc.identifier.orcidhttps://orcid.org/0000-0002-4942-3456
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record