Show simple item record

dc.contributor.authorGovindarajan, Arvind
dc.contributor.authorIsraely, Inbal
dc.contributor.authorTonegawa, Susumu
dc.contributor.authorHuang, Shu Ying
dc.date.accessioned2014-12-16T18:36:38Z
dc.date.available2014-12-16T18:36:38Z
dc.date.issued2011-01
dc.date.submitted2010-10
dc.identifier.issn08966273
dc.identifier.issn1097-4199
dc.identifier.urihttp://hdl.handle.net/1721.1/92335
dc.description.abstractThe late-phase of long-term potentiation (L-LTP), the cellular correlate of long-term memory, induced at some synapses facilitates L-LTP expression at other synapses receiving stimulation too weak to induce L-LTP by itself. Using glutamate uncaging and two-photon imaging, we demonstrate that the efficacy of this facilitation decreases with increasing time between stimulations, increasing distance between stimulated spines and with the spines being on different dendritic branches. Paradoxically, stimulated spines compete for L-LTP expression if stimulated too closely together in time. Furthermore, the facilitation is temporally bidirectional but asymmetric. Additionally, L-LTP formation is itself biased toward occurring on spines within a branch. These data support the Clustered Plasticity Hypothesis, which states that such spatial and temporal limits lead to stable engram formation, preferentially at synapses clustered within dendritic branches rather than dispersed throughout the dendritic arbor. Thus, dendritic branches rather than individual synapses are the primary functional units for long-term memory storage.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.)en_US
dc.description.sponsorshipHoward Hughes Medical Instituteen_US
dc.description.sponsorshipRIKENen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.neuron.2010.12.008en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleThe Dendritic Branch Is the Preferred Integrative Unit for Protein Synthesis-Dependent LTPen_US
dc.typeArticleen_US
dc.identifier.citationGovindarajan, Arvind, Inbal Israely, Shu-Ying Huang, and Susumu Tonegawa. “The Dendritic Branch Is the Preferred Integrative Unit for Protein Synthesis-Dependent LTP.” Neuron 69, no. 1 (January 2011): 132–146. © 2011 Elsevier Inc.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.departmentRIKEN-MIT Center for Neural Circuit Geneticsen_US
dc.contributor.mitauthorGovindarajan, Arvinden_US
dc.contributor.mitauthorHuang, Shu Yingen_US
dc.contributor.mitauthorIsraely, Inbalen_US
dc.contributor.mitauthorTonegawa, Susumuen_US
dc.relation.journalNeuronen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGovindarajan, Arvind; Israely, Inbal; Huang, Shu-Ying; Tonegawa, Susumuen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2839-8228
dc.identifier.orcidhttps://orcid.org/0000-0001-7234-6359
dc.identifier.orcidhttps://orcid.org/0000-0003-3984-6057
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record