Show simple item record

dc.contributor.authorMysore, Omar
dc.contributor.authorYu, Li
dc.contributor.authorWei, Lan
dc.contributor.authorDaniel, Luca
dc.contributor.authorAntoniadis, Dimitri A.
dc.contributor.authorElfadel, Ibrahim M.
dc.contributor.authorBoning, Duane S.
dc.date.accessioned2014-12-22T15:27:22Z
dc.date.available2014-12-22T15:27:22Z
dc.date.issued2013-01
dc.identifier.isbn978-1-4673-3030-5
dc.identifier.isbn978-1-4673-3029-9
dc.identifier.isbn978-1-4673-3028-2
dc.identifier.issn2153-6961
dc.identifier.urihttp://hdl.handle.net/1721.1/92430
dc.description.abstractIn this paper, we present the first validation of the virtual source (VS) charge-based compact model for standard cell libraries and large-scale digital circuits. With only a modest number of physically meaningful parameters, the VS model accounts for the main short-channel effects in nanometer technologies. Using a novel DC and transient parameter extraction methodology, the model is verified with simulated data from a well-characterized, industrial 40-nm bulk silicon model. The VS model is used to fully characterize a standard cell library with timing comparisons showing less than 2.7% error with respect to the industrial design kit. Furthermore, a 1001-stage inverter chain and a 32-bit ripple-carry adder are employed as test cases in a vendor CAD environment to validate the use of the VS model for large-scale digital circuit applications. Parametric Vdd sweeps show that the VS model is also ready for usage in low-power design methodologies. Finally, runtime comparisons have shown that the use of the VS model results in a speedup of about 7.6×.en_US
dc.description.sponsorshipMasdar Institute of Science and Technology (Massachusetts Institute of Technology Cooperative Agreement)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ASPDAC.2013.6509649en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceBoningen_US
dc.titleAn ultra-compact virtual source FET model for deeply-scaled devices: Parameter extraction and validation for standard cell libraries and digital circuitsen_US
dc.typeArticleen_US
dc.identifier.citationLi Yu, O. Mysore, Lan Wei, L. Daniel, D. Antoniadis, I. Elfadel, and D. Boning. “An Ultra-Compact Virtual Source FET Model for Deeply-Scaled Devices: Parameter Extraction and Validation for Standard Cell Libraries and Digital Circuits.” 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC) (January 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Microsystems Technology Laboratoriesen_US
dc.contributor.approverBoning, Duane S.en_US
dc.contributor.mitauthorYu, Lien_US
dc.contributor.mitauthorMysore, Omaren_US
dc.contributor.mitauthorWei, Lanen_US
dc.contributor.mitauthorDaniel, Lucaen_US
dc.contributor.mitauthorAntoniadis, Dimitri A.en_US
dc.contributor.mitauthorBoning, Duane S.en_US
dc.relation.journalProceedings of the 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLi Yu; Mysore, O.; Lan Wei, O.; Daniel, L.; Antoniadis, D.; Elfadel, I.; Boning, D.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5880-3151
dc.identifier.orcidhttps://orcid.org/0000-0002-4836-6525
dc.identifier.orcidhttps://orcid.org/0000-0002-0417-445X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record