dc.contributor.author | Mysore, Omar | |
dc.contributor.author | Yu, Li | |
dc.contributor.author | Wei, Lan | |
dc.contributor.author | Daniel, Luca | |
dc.contributor.author | Antoniadis, Dimitri A. | |
dc.contributor.author | Elfadel, Ibrahim M. | |
dc.contributor.author | Boning, Duane S. | |
dc.date.accessioned | 2014-12-22T15:27:22Z | |
dc.date.available | 2014-12-22T15:27:22Z | |
dc.date.issued | 2013-01 | |
dc.identifier.isbn | 978-1-4673-3030-5 | |
dc.identifier.isbn | 978-1-4673-3029-9 | |
dc.identifier.isbn | 978-1-4673-3028-2 | |
dc.identifier.issn | 2153-6961 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/92430 | |
dc.description.abstract | In this paper, we present the first validation of the virtual source (VS) charge-based compact model for standard cell libraries and large-scale digital circuits. With only a modest number of physically meaningful parameters, the VS model accounts for the main short-channel effects in nanometer technologies. Using a novel DC and transient parameter extraction methodology, the model is verified with simulated data from a well-characterized, industrial 40-nm bulk silicon model. The VS model is used to fully characterize a standard cell library with timing comparisons showing less than 2.7% error with respect to the industrial design kit. Furthermore, a 1001-stage inverter chain and a 32-bit ripple-carry adder are employed as test cases in a vendor CAD environment to validate the use of the VS model for large-scale digital circuit applications. Parametric Vdd sweeps show that the VS model is also ready for usage in low-power design methodologies. Finally, runtime comparisons have shown that the use of the VS model results in a speedup of about 7.6×. | en_US |
dc.description.sponsorship | Masdar Institute of Science and Technology (Massachusetts Institute of Technology Cooperative Agreement) | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/ASPDAC.2013.6509649 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Boning | en_US |
dc.title | An ultra-compact virtual source FET model for deeply-scaled devices: Parameter extraction and validation for standard cell libraries and digital circuits | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Li Yu, O. Mysore, Lan Wei, L. Daniel, D. Antoniadis, I. Elfadel, and D. Boning. “An Ultra-Compact Virtual Source FET Model for Deeply-Scaled Devices: Parameter Extraction and Validation for Standard Cell Libraries and Digital Circuits.” 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC) (January 2013). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Microsystems Technology Laboratories | en_US |
dc.contributor.approver | Boning, Duane S. | en_US |
dc.contributor.mitauthor | Yu, Li | en_US |
dc.contributor.mitauthor | Mysore, Omar | en_US |
dc.contributor.mitauthor | Wei, Lan | en_US |
dc.contributor.mitauthor | Daniel, Luca | en_US |
dc.contributor.mitauthor | Antoniadis, Dimitri A. | en_US |
dc.contributor.mitauthor | Boning, Duane S. | en_US |
dc.relation.journal | Proceedings of the 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC) | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Li Yu; Mysore, O.; Lan Wei, O.; Daniel, L.; Antoniadis, D.; Elfadel, I.; Boning, D. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-5880-3151 | |
dc.identifier.orcid | https://orcid.org/0000-0002-4836-6525 | |
dc.identifier.orcid | https://orcid.org/0000-0002-0417-445X | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |