MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Big Data-Driven Marketing: How Machine Learning Outperforms Marketers’ Gut-Feeling

Author(s)
Sundsøy, Pål; Bjelland, Johannes; Iqbal, Asif M.; Pentland, Alex Paul; de Montjoye, Yves-Alexandre
Thumbnail
DownloadPentland_Big data.pdf (338.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper shows how big data can be experimentally used at large scale for marketing purposes at a mobile network operator. We present results from a large-scale experiment in a MNO in Asia where we use machine learning to segment customers for text-based marketing. This leads to conversion rates far superior to the current best marketing practices within MNOs. Using metadata and social network analysis, we created new metrics to identify customers that are the most likely to convert into mobile internet users. These metrics falls into three categories: discretionary income, timing, and social learning. Using historical data, a machine learning prediction model is then trained, validated, and used to select a treatment group. Experimental results with 250 000 customers show a 13 times better conversion-rate compared to the control group. The control group is selected using the current best practice marketing. The model also shows very good properties in the longer term, as 98% of the converted customers in the treatment group renew their mobile internet packages after the campaign, compared to 37% in the control group. These results show that data-driven marketing can significantly improve conversion rates over current best-practice marketing strategies.
Date issued
2014
URI
http://hdl.handle.net/1721.1/92459
Department
Massachusetts Institute of Technology. Media Laboratory
Journal
Social Computing, Behavioral-Cultural Modeling and Prediction
Publisher
Springer-Verlag Berlin Heidelberg
Citation
Sundsøy, Pål, Johannes Bjelland, Asif M. Iqbal, Alex “Sandy” Pentland, and Yves-Alexandre de Montjoye. “Big Data-Driven Marketing: How Machine Learning Outperforms Marketers’ Gut-Feeling.” Social Computing, Behavioral-Cultural Modeling and Prediction (2014): 367–374.
Version: Author's final manuscript
ISBN
978-3-319-05578-7
978-3-319-05579-4
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.