Show simple item record

dc.contributor.authorSundsøy, Pål
dc.contributor.authorBjelland, Johannes
dc.contributor.authorIqbal, Asif M.
dc.contributor.authorPentland, Alex Paul
dc.contributor.authorde Montjoye, Yves-Alexandre
dc.date.accessioned2014-12-23T16:13:04Z
dc.date.available2014-12-23T16:13:04Z
dc.date.issued2014
dc.identifier.isbn978-3-319-05578-7
dc.identifier.isbn978-3-319-05579-4
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/92459
dc.description.abstractThis paper shows how big data can be experimentally used at large scale for marketing purposes at a mobile network operator. We present results from a large-scale experiment in a MNO in Asia where we use machine learning to segment customers for text-based marketing. This leads to conversion rates far superior to the current best marketing practices within MNOs. Using metadata and social network analysis, we created new metrics to identify customers that are the most likely to convert into mobile internet users. These metrics falls into three categories: discretionary income, timing, and social learning. Using historical data, a machine learning prediction model is then trained, validated, and used to select a treatment group. Experimental results with 250 000 customers show a 13 times better conversion-rate compared to the control group. The control group is selected using the current best practice marketing. The model also shows very good properties in the longer term, as 98% of the converted customers in the treatment group renew their mobile internet packages after the campaign, compared to 37% in the control group. These results show that data-driven marketing can significantly improve conversion rates over current best-practice marketing strategies.en_US
dc.description.sponsorshipUnited States. Army Research Office (Cooperative Agreement Number W911NF-09-2-0053)en_US
dc.description.sponsorshipMIT Media Lab Consortiumen_US
dc.language.isoen_US
dc.publisherSpringer-Verlag Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-05579-4_45en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleBig Data-Driven Marketing: How Machine Learning Outperforms Marketers’ Gut-Feelingen_US
dc.typeArticleen_US
dc.identifier.citationSundsøy, Pål, Johannes Bjelland, Asif M. Iqbal, Alex “Sandy” Pentland, and Yves-Alexandre de Montjoye. “Big Data-Driven Marketing: How Machine Learning Outperforms Marketers’ Gut-Feeling.” Social Computing, Behavioral-Cultural Modeling and Prediction (2014): 367–374.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.mitauthorPentland, Alex Paulen_US
dc.contributor.mitauthorde Montjoye, Yves-Alexandreen_US
dc.relation.journalSocial Computing, Behavioral-Cultural Modeling and Predictionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsSundsøy, Pål; Bjelland, Johannes; Iqbal, Asif M.; Pentland, Alex “Sandy”; de Montjoye, Yves-Alexandreen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8053-9983
dc.identifier.orcidhttps://orcid.org/0000-0001-9086-589X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record