| dc.contributor.author | Paulus, Geraldine L. C. | |
| dc.contributor.author | Lee, Katherine Y. | |
| dc.contributor.author | Wang, Qing Hua | |
| dc.contributor.author | Grassbaugh, Brittany R. | |
| dc.contributor.author | Kruss, Sebastian | |
| dc.contributor.author | Kang, Jeon Woong | |
| dc.contributor.author | Vander Ende, Emma | |
| dc.contributor.author | Zhang, Jingqing | |
| dc.contributor.author | Mu, Bin | |
| dc.contributor.author | Strano, Michael S. | |
| dc.contributor.author | Nelson, Justin Theodore | |
| dc.contributor.author | Landry, Markita Patricia | |
| dc.contributor.author | Opel, Cary Francis | |
| dc.contributor.author | Wittrup, Karl Dane | |
| dc.contributor.author | Dasari, Ramachandra Rao | |
| dc.contributor.author | Reuel, Nigel Forest | |
| dc.date.accessioned | 2014-12-31T20:42:48Z | |
| dc.date.available | 2014-12-31T20:42:48Z | |
| dc.date.issued | 2014-10 | |
| dc.date.submitted | 2014-10 | |
| dc.identifier.issn | 2045-2322 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/92573 | |
| dc.description.abstract | A significant advantage of a graphene biosensor is that it inherently represents a continuum of independent and aligned sensor-units. We demonstrate a nanoscale version of a micro-physiometer – a device that measures cellular metabolic activity from the local acidification rate. Graphene functions as a matrix of independent pH sensors enabling subcellular detection of proton excretion. Raman spectroscopy shows that aqueous protons p-dope graphene – in agreement with established doping trajectories, and that graphene displays two distinct pKa values (2.9 and 14.2), corresponding to dopants physi- and chemisorbing to graphene respectively. The graphene physiometer allows micron spatial resolution and can differentiate immunoglobulin (IgG)-producing human embryonic kidney (HEK) cells from non-IgG-producing control cells. Population-based analyses allow mapping of phenotypic diversity, variances in metabolic activity, and cellular adhesion. Finally we show this platform can be extended to the detection of other analytes, e.g. dopamine. This work motivates the application of graphene as a unique biosensor for (sub)cellular interrogation. | en_US |
| dc.description.sponsorship | National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051) | en_US |
| dc.description.sponsorship | U.S. Army Research Laboratory | en_US |
| dc.description.sponsorship | United States. Army Research Office. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001) | en_US |
| dc.description.sponsorship | National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant P41EB015871-27) | en_US |
| dc.description.sponsorship | Skolkovo Institute of Science and Technology | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Nature Publishing Group | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1038/srep06865 | en_US |
| dc.rights | Creative Commons Attribution | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
| dc.source | Nature Publishing Group | en_US |
| dc.title | A graphene-based physiometer array for the analysis of single biological cells | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Paulus, Geraldine L. C., Justin T. Nelson, Katherine Y. Lee, Qing Hua Wang, Nigel F. Reuel, Brittany R. Grassbaugh, Sebastian Kruss, et al. “A Graphene-Based Physiometer Array for the Analysis of Single Biological Cells.” Sci. Rep. 4 (October 31, 2014): 6865. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Laser Biomedical Research Center | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Spectroscopy Laboratory | en_US |
| dc.contributor.mitauthor | Nelson, Justin Theodore | en_US |
| dc.contributor.mitauthor | Paulus, Geraldine L. C. | en_US |
| dc.contributor.mitauthor | Lee, Katherine Y. | en_US |
| dc.contributor.mitauthor | Wang, Qing Hua | en_US |
| dc.contributor.mitauthor | Reuel, Nigel F. | en_US |
| dc.contributor.mitauthor | Grassbaugh, Brittany R. | en_US |
| dc.contributor.mitauthor | Kruss, Sebastian | en_US |
| dc.contributor.mitauthor | Landry, Markita Patricia | en_US |
| dc.contributor.mitauthor | Vander Ende, Emma | en_US |
| dc.contributor.mitauthor | Zhang, Jingqing | en_US |
| dc.contributor.mitauthor | Mu, Bin | en_US |
| dc.contributor.mitauthor | Opel, Cary Francis | en_US |
| dc.contributor.mitauthor | Wittrup, Karl Dane | en_US |
| dc.contributor.mitauthor | Strano, Michael S. | en_US |
| dc.contributor.mitauthor | Kang, Jeon Woong | en_US |
| dc.contributor.mitauthor | Dasari, Ramachandra Rao | en_US |
| dc.relation.journal | Scientific Reports | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Paulus, Geraldine L. C.; Nelson, Justin T.; Lee, Katherine Y.; Wang, Qing Hua; Reuel, Nigel F.; Grassbaugh, Brittany R.; Kruss, Sebastian; Landry, Markita P.; Kang, Jeon Woong; Vander Ende, Emma; Zhang, Jingqing; Mu, Bin; Dasari, Ramachandra R.; Opel, Cary F.; Wittrup, K. Dane; Strano, Michael S. | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0003-2398-5896 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-5832-8522 | |
| dc.identifier.orcid | https://orcid.org/0000-0003-2944-808X | |
| mit.license | PUBLISHER_CC | en_US |
| mit.metadata.status | Complete | |