MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution

Author(s)
Bezrukavnikov, Roman; Mirković, Ivan
Thumbnail
DownloadBezrukavnikov_Representations of.pdf (787.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We prove most of Lusztig’s conjectures on the canonical basis in homology of a Springer fiber. The conjectures predict that this basis controls numerics of representations of the Lie algebra of a semisimple algebraic group over an algebraically closed field of positive characteristic. We check this for almost all characteristics. To this end we construct a noncommutative resolution of the nilpotent cone which is derived equivalent to the Springer resolution. On the one hand, this noncommutative resolution is closely related to the positive characteristic derived localization equivalences obtained earlier by the present authors and Rumynin. On the other hand, it is compatible with the t-structure arising from an equivalence with the derived category of perverse sheaves on the affine flag variety of the Langlands dual group. This equivalence established by Arkhipov and the first author fits the framework of local geometric Langlands duality. The latter compatibility allows one to apply Frobenius purity theorem to deduce the desired properties of the basis. We expect the noncommutative counterpart of the Springer resolution to be of independent interest from the perspectives of algebraic geometry and geometric Langlands duality.
Date issued
2013-11
URI
http://hdl.handle.net/1721.1/92808
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annals of Mathematics
Publisher
Princeton University Press
Citation
Bezrukavnikov, Roman, and Ivan Mirković. “Representations of Semisimple Lie Algebras in Prime Characteristic and the Noncommutative Springer Resolution.” Ann. Math. 178, no. 3 (2013): 835–919.
Version: Original manuscript
ISSN
0003-486X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.