Show simple item record

dc.contributor.authorBezrukavnikov, Roman
dc.contributor.authorMirković, Ivan
dc.date.accessioned2015-01-12T21:03:41Z
dc.date.available2015-01-12T21:03:41Z
dc.date.issued2013-11
dc.date.submitted2011-01
dc.identifier.issn0003-486X
dc.identifier.urihttp://hdl.handle.net/1721.1/92808
dc.description.abstractWe prove most of Lusztig’s conjectures on the canonical basis in homology of a Springer fiber. The conjectures predict that this basis controls numerics of representations of the Lie algebra of a semisimple algebraic group over an algebraically closed field of positive characteristic. We check this for almost all characteristics. To this end we construct a noncommutative resolution of the nilpotent cone which is derived equivalent to the Springer resolution. On the one hand, this noncommutative resolution is closely related to the positive characteristic derived localization equivalences obtained earlier by the present authors and Rumynin. On the other hand, it is compatible with the t-structure arising from an equivalence with the derived category of perverse sheaves on the affine flag variety of the Langlands dual group. This equivalence established by Arkhipov and the first author fits the framework of local geometric Langlands duality. The latter compatibility allows one to apply Frobenius purity theorem to deduce the desired properties of the basis. We expect the noncommutative counterpart of the Springer resolution to be of independent interest from the perspectives of algebraic geometry and geometric Langlands duality.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA9550-08-1-0315)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0854764)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1102434)en_US
dc.language.isoen_US
dc.publisherPrinceton University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.4007/annals.2013.178.3.2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleRepresentations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolutionen_US
dc.typeArticleen_US
dc.identifier.citationBezrukavnikov, Roman, and Ivan Mirković. “Representations of Semisimple Lie Algebras in Prime Characteristic and the Noncommutative Springer Resolution.” Ann. Math. 178, no. 3 (2013): 835–919.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBezrukavnikov, Romanen_US
dc.relation.journalAnnals of Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBezrukavnikov, Roman; Mirković, Ivanen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5902-8989
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record