MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ramsey numbers of cubes versus cliques

Author(s)
Conlon, David; Fox, Jacob; Lee, Choongbum; Sudakov, Benny
Thumbnail
DownloadFox_Ramsey numbers.pdf (282.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The cube graph Q[subscript n] is the skeleton of the n-dimensional cube. It is an n-regular graph on 2[superscript n] vertices. The Ramsey number r(Q[subscript n] ;K[subscript s]) is the minimum N such that every graph of order N contains the cube graph Q[subscript n] or an independent set of order s. In 1983, Burr and Erdős asked whether the simple lower bound r(Q[subscript n] ;K[subscript s] )≥(s−1)(2[superscript n] −1)+1 is tight for s fixed and n sufficiently large. We make progress on this problem, obtaining the first upper bound which is within a constant factor of the lower bound.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/92844
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Combinatorica
Publisher
Springer-Verlag/Bolyai Society
Citation
Conlon, David, Jacob Fox, Choongbum Lee, and Benny Sudakov. “Ramsey Numbers of Cubes Versus Cliques.” Combinatorica (November 5, 2014).
Version: Original manuscript
ISSN
0209-9683
1439-6912

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.