dc.contributor.author | Conlon, David | |
dc.contributor.author | Fox, Jacob | |
dc.contributor.author | Lee, Choongbum | |
dc.contributor.author | Sudakov, Benny | |
dc.date.accessioned | 2015-01-13T22:22:18Z | |
dc.date.available | 2015-01-13T22:22:18Z | |
dc.date.issued | 2014-11 | |
dc.date.submitted | 2012-08 | |
dc.identifier.issn | 0209-9683 | |
dc.identifier.issn | 1439-6912 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/92844 | |
dc.description.abstract | The cube graph Q[subscript n] is the skeleton of the n-dimensional cube. It is an n-regular graph on 2[superscript n] vertices. The Ramsey number r(Q[subscript n] ;K[subscript s]) is the minimum N such that every graph of order N contains the cube graph Q[subscript n] or an independent set of order s. In 1983, Burr and Erdős asked whether the simple lower bound r(Q[subscript n] ;K[subscript s] )≥(s−1)(2[superscript n] −1)+1 is tight for s fixed and n sufficiently large. We make progress on this problem, obtaining the first upper bound which is within a constant factor of the lower bound. | en_US |
dc.description.sponsorship | Swiss National Science Foundation (SNSF grant 200021-149111) | en_US |
dc.description.sponsorship | United States-Israel Binational Science Foundation | en_US |
dc.description.sponsorship | Samsung (Firm) (Scholarship) | en_US |
dc.description.sponsorship | Royal Society (Great Britain) (University Research Fellowship) | en_US |
dc.description.sponsorship | David & Lucile Packard Foundation (Fellowship) | en_US |
dc.description.sponsorship | Simons Foundation (Fellowship) | en_US |
dc.description.sponsorship | NEC Corporation (MIT NEC Corp. award) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant DMS-1069197) | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag/Bolyai Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00493-014-3010-x | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Ramsey numbers of cubes versus cliques | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Conlon, David, Jacob Fox, Choongbum Lee, and Benny Sudakov. “Ramsey Numbers of Cubes Versus Cliques.” Combinatorica (November 5, 2014). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Fox, Jacob | en_US |
dc.contributor.mitauthor | Lee, Choongbum | en_US |
dc.relation.journal | Combinatorica | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Conlon, David; Fox, Jacob; Lee, Choongbum; Sudakov, Benny | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-5798-3509 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |