Show simple item record

dc.contributor.authorConlon, David
dc.contributor.authorFox, Jacob
dc.contributor.authorLee, Choongbum
dc.contributor.authorSudakov, Benny
dc.date.accessioned2015-01-13T22:22:18Z
dc.date.available2015-01-13T22:22:18Z
dc.date.issued2014-11
dc.date.submitted2012-08
dc.identifier.issn0209-9683
dc.identifier.issn1439-6912
dc.identifier.urihttp://hdl.handle.net/1721.1/92844
dc.description.abstractThe cube graph Q[subscript n] is the skeleton of the n-dimensional cube. It is an n-regular graph on 2[superscript n] vertices. The Ramsey number r(Q[subscript n] ;K[subscript s]) is the minimum N such that every graph of order N contains the cube graph Q[subscript n] or an independent set of order s. In 1983, Burr and Erdős asked whether the simple lower bound r(Q[subscript n] ;K[subscript s] )≥(s−1)(2[superscript n] −1)+1 is tight for s fixed and n sufficiently large. We make progress on this problem, obtaining the first upper bound which is within a constant factor of the lower bound.en_US
dc.description.sponsorshipSwiss National Science Foundation (SNSF grant 200021-149111)en_US
dc.description.sponsorshipUnited States-Israel Binational Science Foundationen_US
dc.description.sponsorshipSamsung (Firm) (Scholarship)en_US
dc.description.sponsorshipRoyal Society (Great Britain) (University Research Fellowship)en_US
dc.description.sponsorshipDavid & Lucile Packard Foundation (Fellowship)en_US
dc.description.sponsorshipSimons Foundation (Fellowship)en_US
dc.description.sponsorshipNEC Corporation (MIT NEC Corp. award)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant DMS-1069197)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlag/Bolyai Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00493-014-3010-xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleRamsey numbers of cubes versus cliquesen_US
dc.typeArticleen_US
dc.identifier.citationConlon, David, Jacob Fox, Choongbum Lee, and Benny Sudakov. “Ramsey Numbers of Cubes Versus Cliques.” Combinatorica (November 5, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorFox, Jacoben_US
dc.contributor.mitauthorLee, Choongbumen_US
dc.relation.journalCombinatoricaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsConlon, David; Fox, Jacob; Lee, Choongbum; Sudakov, Bennyen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5798-3509
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record