MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contraction of Areas vs. Topology of Mappings

Author(s)
Guth, Lawrence
Thumbnail
DownloadGuth_Contraction of.pdf (844.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We construct homotopically non-trivial maps from S[superscript m] to S[superscript m−1] with arbitrarily small k-dilation for each k > [(m + 1) over 2]. We prove that homotopically non-trivial maps from S[superscript m] to S[superscript m−1] cannot have arbitrarily small k-dilation for k ≤ [(m + 1) over 2].
Date issued
2013-08
URI
http://hdl.handle.net/1721.1/92898
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Geometric and Functional Analysis
Publisher
Springer-Verlag
Citation
Guth, Larry. “Contraction of Areas Vs. Topology of Mappings.” Geometric and Functional Analysis 23, no. 6 (December 2013): 1804–1902.
Version: Original manuscript
ISSN
1016-443X
1420-8970

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.