MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rational matrix pseudodifferential operators

Author(s)
Carpentier, Sylvain; De Sole, Alberto; Kac, Victor
Thumbnail
DownloadKac_Rational matrix.pdf (192.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The skewfield K(∂) of rational pseudodifferential operators over a differential field K is the skewfield of fractions of the algebra of differential operators K[∂]. In our previous paper, we showed that any H ∈ K(∂) has a minimal fractional decomposition H = AB[superscript −1] , where A,B ∈ K[∂], B ≠ 0, and any common right divisor of A and B is a non-zero element of K . Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-zero element of K[∂] . In the present paper, we study the ring M[subscript n](K(∂)) of n × n matrices over the skewfield K(∂). We show that similarly, any H ∈ M[subscript n](K(∂)) has a minimal fractional decomposition H = AB[superscript −1], where A,B ∈ M[subscript n](K[∂]), B is non-degenerate, and any common right divisor of A and B is an invertible element of the ring M[subscript n](K[∂]). Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-degenerate element of M[subscript n](K[∂]). We give several equivalent definitions of the minimal fractional decomposition. These results are applied to the study of maximal isotropicity property, used in the theory of Dirac structures.
Date issued
2013-07
URI
http://hdl.handle.net/1721.1/92902
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Selecta Mathematica
Publisher
Springer-Verlag
Citation
Carpentier, Sylvain, Alberto De Sole, and Victor G. Kac. “Rational Matrix Pseudodifferential Operators.” Sel. Math. New Ser. 20, no. 2 (July 4, 2013): 403–419.
Version: Original manuscript
ISSN
1022-1824
1420-9020

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.