dc.contributor.author | Carpentier, Sylvain | |
dc.contributor.author | De Sole, Alberto | |
dc.contributor.author | Kac, Victor | |
dc.date.accessioned | 2015-01-15T19:26:35Z | |
dc.date.available | 2015-01-15T19:26:35Z | |
dc.date.issued | 2013-07 | |
dc.identifier.issn | 1022-1824 | |
dc.identifier.issn | 1420-9020 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/92902 | |
dc.description.abstract | The skewfield K(∂) of rational pseudodifferential operators over a differential field K is the skewfield of fractions of the algebra of differential operators K[∂]. In our previous paper, we showed that any H ∈ K(∂) has a minimal fractional decomposition H = AB[superscript −1] , where A,B ∈ K[∂], B ≠ 0, and any common right divisor of A and B is a non-zero element of K . Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-zero element of K[∂] . In the present paper, we study the ring M[subscript n](K(∂)) of n × n matrices over the skewfield K(∂). We show that similarly, any H ∈ M[subscript n](K(∂)) has a minimal fractional decomposition H = AB[superscript −1], where A,B ∈ M[subscript n](K[∂]), B is non-degenerate, and any common right divisor of A and B is an invertible element of the ring M[subscript n](K[∂]). Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-degenerate element of M[subscript n](K[∂]). We give several equivalent definitions of the minimal fractional decomposition. These results are applied to the study of maximal isotropicity property, used in the theory of Dirac structures. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00029-013-0127-5 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Rational matrix pseudodifferential operators | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Carpentier, Sylvain, Alberto De Sole, and Victor G. Kac. “Rational Matrix Pseudodifferential Operators.” Sel. Math. New Ser. 20, no. 2 (July 4, 2013): 403–419. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Kac, Victor | en_US |
dc.relation.journal | Selecta Mathematica | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Carpentier, Sylvain; De Sole, Alberto; Kac, Victor G. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-2860-7811 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |