MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Round Sphere Minimizes Entropy among Closed Self-Shrinkers

Author(s)
Colding, Tobias; Minicozzi, William; White, Brian; Ilmanen, Tom
Thumbnail
DownloadMinicozzi_The round.pdf (208.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The entropy of a hypersurface is a geometric invariant that measures complexity and is invariant under rigid motions and dilations. It is given by the supremum over all Gaussian integrals with varying centers and scales. It is monotone under mean curvature flow, thus giving a Lyapunov functional. Therefore, the entropy of the initial hypersurface bounds the entropy at all future singularities. We show here that not only does the round sphere have the lowest entropy of any closed singularity, but there is a gap to the second lowest.
Date issued
2013-07
URI
http://hdl.handle.net/1721.1/93156
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Differential Geometry
Publisher
International Press of Boston, Inc.
Citation
Colding, Tobias Holck, Tom Ilmanen, William P. Minicozzi, and Brian White. "The Round Sphere Minimizes Entropy Among Closed Self-Shrinkers." J. Differential Geom. 95.1 (2013): 53-69.
Version: Original manuscript
ISSN
0022-040X
1945-743X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.