| dc.contributor.author | Colding, Tobias | |
| dc.contributor.author | Minicozzi, William | |
| dc.contributor.author | White, Brian | |
| dc.contributor.author | Ilmanen, Tom | |
| dc.date.accessioned | 2015-01-22T20:41:53Z | |
| dc.date.available | 2015-01-22T20:41:53Z | |
| dc.date.issued | 2013-07 | |
| dc.date.submitted | 2012-05 | |
| dc.identifier.issn | 0022-040X | |
| dc.identifier.issn | 1945-743X | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/93156 | |
| dc.description.abstract | The entropy of a hypersurface is a geometric invariant that measures complexity and is invariant under rigid motions and dilations. It is given by the supremum over all Gaussian integrals with varying centers and scales. It is monotone under mean curvature flow, thus giving a Lyapunov functional. Therefore, the entropy of the initial hypersurface bounds the entropy at all future singularities. We show here that not only does the round sphere have the lowest entropy of any closed singularity, but there is a gap to the second lowest. | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS 11040934) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS 0906233) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.). Focused Research Group (Grant DMS 0854774) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.). Focused Research Group (Grant DMS 0853501) | en_US |
| dc.language.iso | en_US | |
| dc.publisher | International Press of Boston, Inc. | en_US |
| dc.relation.isversionof | http://projecteuclid.org/euclid.jdg/1375124609 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | The Round Sphere Minimizes Entropy among Closed Self-Shrinkers | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Colding, Tobias Holck, Tom Ilmanen, William P. Minicozzi, and Brian White. "The Round Sphere Minimizes Entropy Among Closed Self-Shrinkers." J. Differential Geom. 95.1 (2013): 53-69. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.mitauthor | Colding, Tobias | en_US |
| dc.contributor.mitauthor | Minicozzi, William | en_US |
| dc.relation.journal | Journal of Differential Geometry | en_US |
| dc.eprint.version | Original manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
| dspace.orderedauthors | Colding, Tobias Holck; Ilmanen, Tom; Minicozzi, William P.; White, Brian | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0001-6208-384X | |
| dc.identifier.orcid | https://orcid.org/0000-0003-4211-6354 | |
| mit.license | OPEN_ACCESS_POLICY | en_US |
| mit.metadata.status | Complete | |