Show simple item record

dc.contributor.authorMansinghka, Vikash K.
dc.contributor.authorKulkarni, Tejas Dattatraya
dc.contributor.authorPerov, Yura N.
dc.contributor.authorTenenbaum, Joshua B.
dc.date.accessioned2015-01-23T17:13:55Z
dc.date.available2015-01-23T17:13:55Z
dc.date.issued2013
dc.identifier.issn1049-5258
dc.identifier.urihttp://hdl.handle.net/1721.1/93171
dc.description.abstractThe idea of computer vision as the Bayesian inverse problem to computer graphics has a long history and an appealing elegance, but it has proved difficult to directly implement. Instead, most vision tasks are approached via complex bottom-up processing pipelines. Here we show that it is possible to write short, simple probabilistic graphics programs that define flexible generative models and to automatically invert them to interpret real-world images. Generative probabilistic graphics programs (GPGP) consist of a stochastic scene generator, a renderer based on graphics software, a stochastic likelihood model linking the renderer’s output and the data, and latent variables that adjust the fidelity of the renderer and the tolerance of the likelihood. Representations and algorithms from computer graphics are used as the deterministic backbone for highly approximate and stochastic generative models. This formulation combines probabilistic programming, computer graphics, and approximate Bayesian computation, and depends only on general-purpose, automatic inference techniques. We describe two applications: reading sequences of degraded and adversarially obscured characters, and inferring 3D road models from vehicle-mounted camera images. Each of the probabilistic graphics programs we present relies on under 20 lines of probabilistic code, and yields accurate, approximately Bayesian inferences about real-world images.en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleApproximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programsen_US
dc.typeArticleen_US
dc.identifier.citationMansinghka, Vikash K., Tejas D. Kulkarni, Yura N. Perov, and Joshua B. Tenenbaum. Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs." NIPS (2013). p.1520-1528.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorMansinghka, Vikash K.en_US
dc.contributor.mitauthorKulkarni, Tejas Dattatrayaen_US
dc.contributor.mitauthorPerov, Yura N.en_US
dc.contributor.mitauthorTenenbaum, Joshua B.en_US
dc.relation.journalAdvances in neural information processing systems 26, NIPS 2013en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMansinghka, Vikash; Kulkarni, Tejas D.; Perov, Yura N.; Tenenbaum, Joshuaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7077-2765
dc.identifier.orcidhttps://orcid.org/0000-0002-1925-2035
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record