MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Lecture Hall Parallelepiped

Author(s)
Liu, Fu; Stanley, Richard P.
Thumbnail
DownloadStanley_The lecture.pdf (175.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The s-lecture hall polytopes P [subscript s] are a class of integer polytopes defined by Savage and Schuster which are closely related to the lecture hall partitions of Eriksson and Bousquet-Mélou. We define a half-open parallelopiped Par [subscript s] associated with P [subscript s] and give a simple description of its integer points. We use this description to recover earlier results of Savage et al. on the δ-vector (or h*-vector) and to obtain the connections to s-ascents and s-descents, as well as some generalizations of these results.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/93191
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annals of Combinatorics
Publisher
Springer-Verlag
Citation
Liu, Fu, and Richard P. Stanley. “The Lecture Hall Parallelepiped.” Ann. Comb. 18, no. 3 (July 2, 2014): 473–488.
Version: Original manuscript
ISSN
0218-0006
0219-3094

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.