Show simple item record

dc.contributor.authorLiu, Fu
dc.contributor.authorStanley, Richard P.
dc.date.accessioned2015-01-29T16:22:11Z
dc.date.available2015-01-29T16:22:11Z
dc.date.issued2014-07
dc.date.submitted2013-04
dc.identifier.issn0218-0006
dc.identifier.issn0219-3094
dc.identifier.urihttp://hdl.handle.net/1721.1/93191
dc.description.abstractThe s-lecture hall polytopes P [subscript s] are a class of integer polytopes defined by Savage and Schuster which are closely related to the lecture hall partitions of Eriksson and Bousquet-Mélou. We define a half-open parallelopiped Par [subscript s] associated with P [subscript s] and give a simple description of its integer points. We use this description to recover earlier results of Savage et al. on the δ-vector (or h*-vector) and to obtain the connections to s-ascents and s-descents, as well as some generalizations of these results.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1068625)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00026-014-0235-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleThe Lecture Hall Parallelepipeden_US
dc.typeArticleen_US
dc.identifier.citationLiu, Fu, and Richard P. Stanley. “The Lecture Hall Parallelepiped.” Ann. Comb. 18, no. 3 (July 2, 2014): 473–488.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorStanley, Richard P.en_US
dc.relation.journalAnnals of Combinatoricsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLiu, Fu; Stanley, Richard P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3123-8241
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record