Point defect stability in a semicoherent metallic interface
Author(s)
Iglesias, R.; Demkowicz, Michael J.; Gonzalez, C.
DownloadPhysRevB.91.064103.pdf (1.326Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We present a comprehensive density functional theory (DFT) -based study of different aspects of one vacancy and He impurity atom behavior at semicoherent interfaces between the low-solubility transition metals Cu and Nb. Such interfaces have not been previously modeled using DFT. A thorough analysis of the stability and mobility of the two types of defects at the interfaces and neighboring internal layers has been performed and the results have been compared to the equivalent cases in the pure metallic matrices. The different behavior of fcc and bcc metals on both sides of the interface has been specifically assessed. The modeling effort undertaken is the first attempt to study the stability and defect energetics of noncoherent Cu/Nb interfaces from first principles, in order to assess their potential use in radiation-resistant materials.
Date issued
2015-02Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Physical Review B
Publisher
American Physical Society
Citation
Gonzalez, C., R. Iglesias, and M. J. Demkowicz. "Point defect stability in a semicoherent metallic interface." Phys. Rev. B 91, 064103 (February 2015). © 2015 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X