MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topological crystalline insulator nanomembrane with strain-tunable band gap

Author(s)
Qian, Xiaofeng; Fu, Liang; Li, Ju
Thumbnail
DownloadLi_Topological crystalline.pdf (6.887Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The ability to fine-tune band gap and band inversion in topological materials is highly desirable for the development of novel functional devices. Here we propose that the electronic properties of free-standing nanomembranes of the topological crystalline insulators (TCI) SnTe and Pb[subscript 1−x] Sn [subscript x] (Se,Te) are highly tunable by engineering elastic strain and membrane thickness, resulting in tunable band gap and giant piezoconductivity. Membrane thickness governs the hybridization of topological electronic states on opposite surfaces, while elastic strain can further modulate the hybridization strength by controlling the penetration length of surface states. We propose a frequency-resolved infrared photodetector using force-concentration induced inhomogeneous elastic strain in TCI nanomembranes with spatially varying width. The predicted tunable band gap accompanied by strong spin-textured electronic states will open new avenues for fabricating piezoresistive devices, infrared detectors and energy-efficient electronic and spintronic devices based on TCI nanomembrane.
Date issued
2014-09
URI
http://hdl.handle.net/1721.1/95884
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Physics
Journal
Nano Research
Publisher
Springer-Verlag
Citation
Qian, Xiaofeng, Liang Fu, and Ju Li. “Topological Crystalline Insulator Nanomembrane with Strain-Tunable Band Gap.” Nano Res. (October 17, 2014).
Version: Original manuscript
ISSN
1998-0124
1998-0000

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.