Show simple item record

dc.contributor.authorQian, Xiaofeng
dc.contributor.authorFu, Liang
dc.contributor.authorLi, Ju
dc.date.accessioned2015-03-05T19:07:34Z
dc.date.available2015-03-05T19:07:34Z
dc.date.issued2014-09
dc.date.submitted2014-08
dc.identifier.issn1998-0124
dc.identifier.issn1998-0000
dc.identifier.urihttp://hdl.handle.net/1721.1/95884
dc.description.abstractThe ability to fine-tune band gap and band inversion in topological materials is highly desirable for the development of novel functional devices. Here we propose that the electronic properties of free-standing nanomembranes of the topological crystalline insulators (TCI) SnTe and Pb[subscript 1−x] Sn [subscript x] (Se,Te) are highly tunable by engineering elastic strain and membrane thickness, resulting in tunable band gap and giant piezoconductivity. Membrane thickness governs the hybridization of topological electronic states on opposite surfaces, while elastic strain can further modulate the hybridization strength by controlling the penetration length of surface states. We propose a frequency-resolved infrared photodetector using force-concentration induced inhomogeneous elastic strain in TCI nanomembranes with spatially varying width. The predicted tunable band gap accompanied by strong spin-textured electronic states will open new avenues for fabricating piezoresistive devices, infrared detectors and energy-efficient electronic and spintronic devices based on TCI nanomembrane.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMR-1120901)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DE-SC0010526)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Extreme Science and Engineering Discovery Environment (Grant TG-DMR130038)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Extreme Science and Engineering Discovery Environment (Grant TG-DMR140003)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Extreme Science and Engineering Discovery Environment (Grant TG-PHY140014)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s12274-014-0578-9en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleTopological crystalline insulator nanomembrane with strain-tunable band gapen_US
dc.typeArticleen_US
dc.identifier.citationQian, Xiaofeng, Liang Fu, and Ju Li. “Topological Crystalline Insulator Nanomembrane with Strain-Tunable Band Gap.” Nano Res. (October 17, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorLi, Juen_US
dc.contributor.mitauthorQian, Xiaofengen_US
dc.contributor.mitauthorFu, Liangen_US
dc.relation.journalNano Researchen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsQian, Xiaofeng; Fu, Liang; Li, Juen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8803-1017
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record