MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synergistic cross-scale coupling of turbulence in a tokamak plasma

Author(s)
Howard, Nathaniel Thomas; Holland, C.; Candy, J.; Greenwald, Martin J.; White, Anne E.
Thumbnail
DownloadWhite_Synergistic cross.pdf (3.032Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((m[subscript D] [over m [subscript e])[superscript 1 over 2] = 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (k[subscript θρs] ~O(1.0)) and electron-scale (k[subscript θρe] ~O(1.0)) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (k[subscript r] ≪ k[subscript θ]) “streamers” are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρ[subscript i] scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/95897
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Physics of Plasmas
Publisher
American Institute of Physics (AIP)
Citation
Howard, N. T., C. Holland, A. E. White, M. Greenwald, and J. Candy. “Synergistic Cross-Scale Coupling of Turbulence in a Tokamak Plasma.” Phys. Plasmas 21, no. 11 (November 2014): 112510.
Version: Original manuscript
ISSN
1070-664X
1089-7674

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.