Show simple item record

dc.contributor.authorHoward, Nathaniel Thomas
dc.contributor.authorHolland, C.
dc.contributor.authorCandy, J.
dc.contributor.authorGreenwald, Martin J.
dc.contributor.authorWhite, Anne E.
dc.date.accessioned2015-03-05T20:47:32Z
dc.date.available2015-03-05T20:47:32Z
dc.date.issued2014-11
dc.date.submitted2014-07
dc.identifier.issn1070-664X
dc.identifier.issn1089-7674
dc.identifier.urihttp://hdl.handle.net/1721.1/95897
dc.description.abstractFor the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((m[subscript D] [over m [subscript e])[superscript 1 over 2] = 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (k[subscript θρs] ~O(1.0)) and electron-scale (k[subscript θρe] ~O(1.0)) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-prediction of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (k[subscript r] ≪ k[subscript θ]) “streamers” are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρ[subscript i] scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Science (Contract DE-AC02-05CH11231)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Contract DE-FC02-99ER54512-CMOD)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Fusion Energy Postdoctoral Research Program (Oak Ridge Institute for Science and Education)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4902366en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleSynergistic cross-scale coupling of turbulence in a tokamak plasmaen_US
dc.typeArticleen_US
dc.identifier.citationHoward, N. T., C. Holland, A. E. White, M. Greenwald, and J. Candy. “Synergistic Cross-Scale Coupling of Turbulence in a Tokamak Plasma.” Phys. Plasmas 21, no. 11 (November 2014): 112510.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.mitauthorGreenwald, Martin J.en_US
dc.contributor.mitauthorWhite, Anne E.en_US
dc.relation.journalPhysics of Plasmasen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsHoward, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2951-9749
dc.identifier.orcidhttps://orcid.org/0000-0002-4438-729X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record