MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Elastic-net regularization in learning theory

Author(s)
De Mol, Christine; De Vito, Ernesto; Rosasco, Lorenzo Andrea
Thumbnail
DownloadMol-2009-Elastic-net regulari.pdf (1.269Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Within the framework of statistical learning theory we analyze in detail the so-called elastic-net regularization scheme proposed by Zou and Hastie [H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B, 67(2) (2005) 301–320] for the selection of groups of correlated variables. To investigate the statistical properties of this scheme and in particular its consistency properties, we set up a suitable mathematical framework. Our setting is random-design regression where we allow the response variable to be vector-valued and we consider prediction functions which are linear combinations of elements (features) in an infinite-dimensional dictionary. Under the assumption that the regression function admits a sparse representation on the dictionary, we prove that there exists a particular “elastic-net representation” of the regression function such that, if the number of data increases, the elastic-net estimator is consistent not only for prediction but also for variable/feature selection. Our results include finite-sample bounds and an adaptive scheme to select the regularization parameter. Moreover, using convex analysis tools, we derive an iterative thresholding algorithm for computing the elastic-net solution which is different from the optimization procedure originally proposed in the above-cited work.
Date issued
2009-01
URI
http://hdl.handle.net/1721.1/96186
Department
Massachusetts Institute of Technology. Center for Biological & Computational Learning; McGovern Institute for Brain Research at MIT
Journal
Journal of Complexity
Publisher
Elsevier
Citation
De Mol, Christine, Ernesto De Vito, and Lorenzo Rosasco. “Elastic-Net Regularization in Learning Theory.” Journal of Complexity 25, no. 2 (April 2009): 201–230. © 2009 Elsevier Inc.
Version: Final published version
ISSN
0885064X
1090-2708

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.