Show simple item record

dc.contributor.authorDe Mol, Christine
dc.contributor.authorDe Vito, Ernesto
dc.contributor.authorRosasco, Lorenzo Andrea
dc.date.accessioned2015-03-25T17:32:22Z
dc.date.available2015-03-25T17:32:22Z
dc.date.issued2009-01
dc.date.submitted2008-08
dc.identifier.issn0885064X
dc.identifier.issn1090-2708
dc.identifier.urihttp://hdl.handle.net/1721.1/96186
dc.description.abstractWithin the framework of statistical learning theory we analyze in detail the so-called elastic-net regularization scheme proposed by Zou and Hastie [H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B, 67(2) (2005) 301–320] for the selection of groups of correlated variables. To investigate the statistical properties of this scheme and in particular its consistency properties, we set up a suitable mathematical framework. Our setting is random-design regression where we allow the response variable to be vector-valued and we consider prediction functions which are linear combinations of elements (features) in an infinite-dimensional dictionary. Under the assumption that the regression function admits a sparse representation on the dictionary, we prove that there exists a particular “elastic-net representation” of the regression function such that, if the number of data increases, the elastic-net estimator is consistent not only for prediction but also for variable/feature selection. Our results include finite-sample bounds and an adaptive scheme to select the regularization parameter. Moreover, using convex analysis tools, we derive an iterative thresholding algorithm for computing the elastic-net solution which is different from the optimization procedure originally proposed in the above-cited work.en_US
dc.description.sponsorshipEuropean Union. Integrated Project Health-e-Child (IST-2004-027749)en_US
dc.description.sponsorshipItaly. Ministry of Education, Universities and Research. FIRB Project (RBIN04PARL)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jco.2009.01.002en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleElastic-net regularization in learning theoryen_US
dc.typeArticleen_US
dc.identifier.citationDe Mol, Christine, Ernesto De Vito, and Lorenzo Rosasco. “Elastic-Net Regularization in Learning Theory.” Journal of Complexity 25, no. 2 (April 2009): 201–230. © 2009 Elsevier Inc.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Biological & Computational Learningen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorRosasco, Lorenzo Andreaen_US
dc.relation.journalJournal of Complexityen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDe Mol, Christine; De Vito, Ernesto; Rosasco, Lorenzoen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6376-4786
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record