MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Statistics and Predictability of Go-Arounds

Author(s)
Gariel, Maxime; Spieser, Kevin; Frazzoli, Emilio
Thumbnail
DownloadFrazzoli_On the statistics.pdf (487.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper takes an empirical approach to identify operational factors at busy airports that may predate go-around maneuvers. Using four years of data from San Francisco International Airport, we begin our investigation with a statistical approach to investigate which features of airborne, ground operations (e.g., number of inbound aircraft, number of aircraft taxiing from gate, etc.) or weather are most likely to fluctuate, relative to nominal operations, in the minutes immediately preceding a missed approach. We analyze these findings both in terms of their implication on current airport operations and discuss how the antecedent factors may affect NextGen. Finally, as a means to assist air traffic controllers, we draw upon techniques from the machine learning community to develop a preliminary alert system for go-around prediction.
Date issued
2011-10
URI
http://hdl.handle.net/1721.1/96937
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Proceedings of the 2011 Conference on Intelligent Data Understanding
Citation
Gariel, Maxime, Kevin Spieser, and Emilio Frazzoli. "On the Statistics and Predictability of Go-Arounds." 2011 Conference on Intelligent Data Understanding, October 19-21, 2011.
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.