Show simple item record

dc.contributor.authorGariel, Maxime
dc.contributor.authorSpieser, Kevin
dc.contributor.authorFrazzoli, Emilio
dc.date.accessioned2015-05-08T14:36:04Z
dc.date.available2015-05-08T14:36:04Z
dc.date.issued2011-10
dc.identifier.urihttp://hdl.handle.net/1721.1/96937
dc.description.abstractThis paper takes an empirical approach to identify operational factors at busy airports that may predate go-around maneuvers. Using four years of data from San Francisco International Airport, we begin our investigation with a statistical approach to investigate which features of airborne, ground operations (e.g., number of inbound aircraft, number of aircraft taxiing from gate, etc.) or weather are most likely to fluctuate, relative to nominal operations, in the minutes immediately preceding a missed approach. We analyze these findings both in terms of their implication on current airport operations and discuss how the antecedent factors may affect NextGen. Finally, as a means to assist air traffic controllers, we draw upon techniques from the machine learning community to develop a preliminary alert system for go-around prediction.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Grant NNX08AY52A))en_US
dc.language.isoen_US
dc.relation.isversionofhttps://c3.nasa.gov/dashlink/static/media/other/CIDU_Proceedings2011.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleOn the Statistics and Predictability of Go-Aroundsen_US
dc.typeArticleen_US
dc.identifier.citationGariel, Maxime, Kevin Spieser, and Emilio Frazzoli. "On the Statistics and Predictability of Go-Arounds." 2011 Conference on Intelligent Data Understanding, October 19-21, 2011.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorGariel, Maximeen_US
dc.contributor.mitauthorSpieser, Kevinen_US
dc.contributor.mitauthorFrazzoli, Emilioen_US
dc.relation.journalProceedings of the 2011 Conference on Intelligent Data Understandingen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsGariel, Maxime; Spieser, Kevin; Frazzoli, Emilioen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0505-1400
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record