MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hemodynamic Changes following Aortic Valve Bypass: A Mathematical Approach

Author(s)
Benevento, Emilia; Djebbari, Abdelghani; Cecere, Renzo; Kadem, Lyes; Keshavarz Motamed, Zahra
Thumbnail
DownloadBenevento-2015-Hemodynamic Changes.pdf (415.8Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Aortic valve bypass (AVB) has been shown to be a viable solution for patients with severe aortic stenosis (AS). Under this circumstance, the left ventricle (LV) has a double outlet. The objective was to develop a mathematical model capable of evaluating the hemodynamic performance following the AVB surgery. A mathematical model that captures the interaction between LV, AS, arterial system, and AVB was developed. This model uses a limited number of parameters that all can be non-invasively measured using patient data. The model was validated using in vivo data from the literature. The model was used to determine the effect of different AVB and AS configurations on flow proportion and pressure of the aortic valve and the AVB. Results showed that the AVB leads to a significant reduction in transvalvular pressure gradient. The percentage of flow through the AVB can range from 55.47% to 69.43% following AVB with a severe AS. LV stroke work was also significantly reduced following the AVB surgery and reached a value of around 1.2 J for several AS severities. Findings of this study suggest: 1) the AVB leads to a significant reduction in transvalvular pressure gradients; 2) flow distribution between the AS and the AVB is significantly affected by the conduit valve size; 3) the AVB leads to a significant reduction in LV stroke work; and 4) hemodynamic performance variations can be estimated using the model.
Date issued
2015-04
URI
http://hdl.handle.net/1721.1/97107
Department
Institute for Medical Engineering and Science; Harvard University--MIT Division of Health Sciences and Technology
Journal
PLOS ONE
Publisher
Public Library of Science
Citation
Benevento, Emilia, Abdelghani Djebbari, Zahra Keshavarz-Motamed, Renzo Cecere, and Lyes Kadem. “Hemodynamic Changes Following Aortic Valve Bypass: A Mathematical Approach.” Edited by Alberto Aliseda. PLOS ONE 10, no. 4 (April 16, 2015): e0123000.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.