CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield
Author(s)
Kudo, Akira; Steiner, Stephen A.; Bayer, Bernhard C.; Kidambi, Piran R.; Hofmann, Stephan; Strano, Michael S.; Wardle, Brian L.; ... Show more Show less
DownloadWardle_CVD growth.pdf (2.104Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morphological features of carbon nanotubes and nanofibers (CNTs and CNFs) grown from zirconia nanoparticle catalysts versus typical oxide-supported metal nanoparticle catalysts. Nanofibers borne from zirconia lack an observable graphitic cage consistently found with nanotube-bearing metal nanoparticle catalysts. We observe two distinct growth modalities for zirconia: (1) turbostratic CNTs 2–3 times smaller in diameter than the nanoparticle localized at a nanoparticle corner, and (2) nonhollow CNFs with approximately the same diameter as the nanoparticle. Unlike metal nanoparticle catalysts, zirconia-based growth should proceed via surface-bound kinetics, and we propose a growth model where initiation occurs at nanoparticle corners. Utilizing these mechanistic insights, we further demonstrate that preannealing of zirconia nanoparticles with a solid-state amorphous carbon substrate enhances growth yield.
Date issued
2014-12Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Journal of the American Chemical Society
Publisher
American Chemical Society (ACS)
Citation
Kudo, Akira, Stephen A. Steiner, Bernhard C. Bayer, Piran R. Kidambi, Stephan Hofmann, Michael S. Strano, and Brian L. Wardle. “CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield.” Journal of the American Chemical Society 136, no. 51 (December 24, 2014): 17808–17817. © 2014 American Chemical Society
Version: Final published version
ISSN
0002-7863
1520-5126