Show simple item record

dc.contributor.authorKudo, Akira
dc.contributor.authorSteiner, Stephen A.
dc.contributor.authorBayer, Bernhard C.
dc.contributor.authorKidambi, Piran R.
dc.contributor.authorHofmann, Stephan
dc.contributor.authorStrano, Michael S.
dc.contributor.authorWardle, Brian L.
dc.date.accessioned2015-06-03T16:21:56Z
dc.date.available2015-06-03T16:21:56Z
dc.date.issued2014-12
dc.date.submitted2014-09
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttp://hdl.handle.net/1721.1/97179
dc.description.abstractBy excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morphological features of carbon nanotubes and nanofibers (CNTs and CNFs) grown from zirconia nanoparticle catalysts versus typical oxide-supported metal nanoparticle catalysts. Nanofibers borne from zirconia lack an observable graphitic cage consistently found with nanotube-bearing metal nanoparticle catalysts. We observe two distinct growth modalities for zirconia: (1) turbostratic CNTs 2–3 times smaller in diameter than the nanoparticle localized at a nanoparticle corner, and (2) nonhollow CNFs with approximately the same diameter as the nanoparticle. Unlike metal nanoparticle catalysts, zirconia-based growth should proceed via surface-bound kinetics, and we propose a growth model where initiation occurs at nanoparticle corners. Utilizing these mechanistic insights, we further demonstrate that preannealing of zirconia nanoparticles with a solid-state amorphous carbon substrate enhances growth yield.en_US
dc.description.sponsorshipUnited States. Army Research Office (Contract W911NF-13-D-0001)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/ja509872yen_US
dc.rightsCreative Commons Attribution Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceACSen_US
dc.titleCVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yielden_US
dc.typeArticleen_US
dc.identifier.citationKudo, Akira, Stephen A. Steiner, Bernhard C. Bayer, Piran R. Kidambi, Stephan Hofmann, Michael S. Strano, and Brian L. Wardle. “CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield.” Journal of the American Chemical Society 136, no. 51 (December 24, 2014): 17808–17817. © 2014 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorKudo, Akiraen_US
dc.contributor.mitauthorSteiner, Stephen A.en_US
dc.contributor.mitauthorStrano, Michael S.en_US
dc.contributor.mitauthorWardle, Brian L.en_US
dc.relation.journalJournal of the American Chemical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKudo, Akira; Steiner, Stephen A.; Bayer, Bernhard C.; Kidambi, Piran R.; Hofmann, Stephan; Strano, Michael S.; Wardle, Brian L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3506-9924
dc.identifier.orcidhttps://orcid.org/0000-0003-3530-5819
dc.identifier.orcidhttps://orcid.org/0000-0003-2944-808X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record