MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An improved error bound for reduced basis approximation of linear parabolic problems

Author(s)
Urban, Karsten; Patera, Anthony T.
Thumbnail
DownloadPatera_An improved.pdf (273.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We consider a space-time variational formulation for linear parabolic partial differential equations. We introduce an associated Petrov-Galerkin truth finite element discretization with favorable discrete inf-sup constant β[subscript δ], the inverse of which enters into error estimates: β[subscript δ] is unity for the heat equation; β[subscript δ] decreases only linearly in time for non-coercive (but asymptotically stable) convection operators. The latter in turn permits effective long-time a posteriori error bounds for reduced basis approximations, in sharp contrast to classical (pessimistic) exponentially growing energy estimates. The paper contains a full analysis and various extensions for the formulation introduced briefly by Urban and Patera (2012) as well as numerical results for a model reaction-convection-diffusion equation.
Date issued
2013-10
URI
http://hdl.handle.net/1721.1/97697
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Mathematics of Computation
Publisher
American Mathematical Society (AMS)
Citation
Urban, Karsten, and Anthony T. Patera. “An Improved Error Bound for Reduced Basis Approximation of Linear Parabolic Problems.” Mathematics of Computation 83, no. 288 (October 23, 2013): 1599–1615. © 2013 American Mathematical Society
Version: Final published version
ISSN
0025-5718
1088-6842

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.